
£w 3w^
REPORT DOCUMENTATION PAGE

Form Approved

,OMB Nok0704-0188

'Public reporting buraen for this collection of information is estimator to average i hour per response, including the time for renewing instructions, searching existing aata sources.
gathering and maintaining the data needed, and completing anö reviewing the collection of information Send comments reaarding this buraen estimate or any other asoect of this
collection of information, including suggestions for reducing this ourcfen. tc Washington Headouarters Services. Directorate for information Ooeraticrs ano Heoorts. 1215 Jefferson
Davis Highway. Suite 1204. t, rlmgton. /A 22202-43Gtf. and to the Office of Management and Budget. Paperwork Reduction Project (07C4-018S) Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

29 Feb 96
3. REPORT TYPE AND DATES COVERED

Final Report: 1 Jun 95 - 30 Nov 95
4. TITLE AND SUBTITLE

Artificial Intelligence and Operations Research
Timberline, Oregon Workshop: June 6-10, 1995

6. AUTHOR(S)

5. FUNDING NUMBERS

G:F49620-95-1-0373
PR-TA: C628/00

Matthew L. Ginsberg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Oregon
Eugene, OR 97403

AFOSR-TR-96

6W4
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
110 Duncan Avenue Suite Bl 15
Boiling AFB, DC 20332-0001

Program Manager:
Dr. Abraham Waksman

. 3KUNSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The first international joint workshop on artificial intelligence and operations research was held
successfully at Timberline Lodge in Timberline, Oregon on June 6 - 10, 1995. The workshop was
supported by ARPA and AFOSR, and this report consists of proceedings of the conference.

mm m
14. SUBJECT TERMS 15. NUMBER OF PAGES

135
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCL

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCL

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCL

20. LIMITATION OF ABSTRACT

MSN 7540-01-280-5500 DTIC QUALITY XM8PEGIED Stardard Form 298 (Rev 2-89)
■■ii", n*f] b. aNSi std /jM-'B

Artificial Intelligence and Operations Research

Matthew L. Ginsberg

CIRL
.1269 University of Oregon

Eugene, OR 97403-1269
ginsberg@cirl.uoregon.edu

Final technical report

Names and phone numbers of key personnel:
Technical: Matthew L. Ginsberg 503-346-0471 ginsberg@cirl.uoregon.edu
Business: Gary Chaffins 541-346-2395

1 Summary

The first international joint workshop on artificial intelligence and operations research was
held successfully at Timberline Lodge in Timberline, Oregon on June 6-10, 1995. The
workshop was supported by ARPA and AFOSR, and this report summarizes the activity.

Requests for attendance at the workshop far outnumbered our ability to accommodate
people, and workshop participants were limited to approximately forty individuals from
academia. industry, and government. These participants included five government observers
and the technical leaders of both fields; the organization of the workshop was designed to
maximize the exchange of information between the two communities. As such, the work-'
shop program (a copy follows this summary) included parallel overview tutorials or AI and
OR. along with specific tutorials on topics that had been identified as of interest to the
participants. These covered learning and Markov decision processes.

The program also included a variety of technical talks that were selected on the basis of
both the quality of their results and their accessibility to a joint audience. Copies of all of the
presented papers are also included in this report. Finally, industrial participants described
specific application areas where joint AI/OR techniques could be expected to be applicable.
These included emergency shutdown procedures for nuclear power plants, aircraft assembly
operations, and molecular design problems.

The workshop was viewed as an overwhelming success by all participants, and at least
one joint AI/OR effort has already arisen out of it (joint work by Nemhauser and Crawford
funded by AFOSR). A variety of AI participants (Crawford, Ginsberg, Kautz, McAllester,
Selman) have begun to participate in the annual OR conferences as well, and technical
exchanges between the two communities continue.

Agenda
AI/OR Workshop

Timberline Lodge, Oregon
June 6 -10,1995

Tuesday 6/6

1500 Welcome (Hooker)

1515 Tutorials (basic AI (Selman), basic OR (Hall))

1645 Break

1700 Logic-based methods for engineering design (Hooker)

1830 Dinner banquet [keynote speech: Ginsberg]

Wednesday 6/7

0900 AI tutorial: learning (Minton)

1030 Break

1045 OR tutorial: MDP's (Bell)

1230 Lunch

1400 Solving problems with hard and soft constraints using a stochastic algorithm for max-sat
(Kautz)

1435 An approach to the maximum satisfiability problem that combines heuristics with branch and
cut (Borchers)

1510 On finding solutions for extended Horn formulas (Schlipf)

1545 Break

1600 . The progressive party problem: Linear programming and constraint programming compared
(B Smith)

1635 The TSP phase transition (Walsh)

Thursday 6/8

0900 Heterogeneous conjunctive constraints (Fox)

0945 Integer programming for job shop scheduling and a related problem (Boyd)

1020 Break

1035 A constraint satisfaction approach to makespan scheduling (S Smith)

1110 Planning and scheduling of nuclear power plant outages (Gomes)
1210 Lunch

1330 Combining the large-step optimization with tabu-search: Applications to the job-shop
scheduling problem (Lourenco)

1405 An overview of learning in the Multi-tac system (Minton)

1440 Break

1455 Improving Dewar assembly process plans (D Smith)

1540 Incorporating efficient OR algorithms in constraint-based scheduling (Nuijten)

1615 Panel: opportunities for collaboration (Nemhauser)

Friday 6/9

0900 Free morning

1230 Lunch

1345 Chemical engineering process design, scheduling and operation (Realff)

1430 Representation and search issues involving MDPs (Dean)

1505 Break

1520 Panel: experimental results (Crawford)

1640 Panel: competing search methodologies (McAllester)

Saturday 6/10

0900 Robust encodings of OR problems for genetic algorithms (Bean)

0935 Interdependence of methods and representations in design of software for combinatorial
optimization (Fourer)

1010 Break

1025 Panel 4: government interest (Khosla)

1130 Adjourn for 1:30 flights back to East Coast

Proceedings of the Conference

Jiang, Yuejun; Kautz, Henry; Selman, Bart. Solving Problems with Hard and Soft Constraints Using a
Stochastic Algorithm for MAX-SAT

Borchers, Brian; Mitchell, John E. An Approach to the Maximum Satisfiability Problem that Combines
Heuristics with Branch and Cut

Schlipf, John S.; Annexstein, Fred S.; Franco, John V.; Swaminathan, R.P. On Finding Solutions for
Extended Horn Formulas

Smith, Barbara M.; Brailsford, Sally C; Hubbard, Peter M.; Williams, H. Paul. The Progressive Party
Problem: Linear Programming and Constraint Programming Compared

Gent, Ian P.; Walsh, Toby. The TSP Phase Transition

Boyd, E. Andrew. Integer Programming for Job Shop Scheduling and a Related Problem

Cheng, Cheng-Chung; Smith, Stephen F. A Constraint Satisfaction Approach to Makespan Scheduling

Lourenco, Helena Ramalhinho; Zwijnenburg, Michiel. Combining the Large-Step Optimization with
Tabu-Search: Applications to the Job-Shop Scheduling Problem

Minton, Steve; Allen, John A.; Wolfe, Shawn; Philpot, Andrew. An Overview of Learning in the Multi-
TAC System

Baptiste, Philippe; Le Pape, Claude; Nuijten, Wim. Incorporating Efficient Operations Research
Algorithms in Constraint-Based Scheduling

Dean, Thomas. Position Paper for First International Joint Workshop on Artificial Intelligence and
Operations Research

Bean, James C; Hadj-Alouane, Atidel; Norman, Bryan. Robust Encodings of OR Problems for Genetic
Algorithms

Coullard, Collette; Fourer, Robert. Interdependence of Methods and Representations in Design of
Software for Combinatorial Optimization

Solving Problems with Hard and Soft Constraints
Using a Stochastic Algorithm for MAX-SAT

Yuejun Jiang, Henry Kautz, and Bart Selman
AT&T Bell Laboratories

Direct correspondence to:
Henry Kautz

600 Mountain Ave., Room 2C-407
Murray Hill, NJ 07974

{kautz} @research.att.com

Abstract
Stochastic local search is an effective technique for solving certain classes

of large, hard propositional satisfiability problems, including propositional en-
codings of problems such as circuit synthesis and graph coloring (Selman,
Levesque, and Mitchell 1992; Selman, Kautz, and Cohen 1994). Many prob-
lems of interest to AI and operations research cannot be conveniently encoded
as simple satisfiability, because they involve both hard and soft constraints -
that is, any solution may have to violate some of the less important constraints.
We show how both kinds of constraints can be handled by encoding problems
as instances of weighted MAX-SAT (finding a model that maximizes the sum of
the weights of the satisfied clauses that make up a problem instance). We gen-
eralize our local-search algorithm for satisfiability (GSAT) to handle weighted
MAX-SAT, and present experimental results on encodings of the Steiner tree
problem, which is a well-studied hard combinatorial search problem. On many
problems this approach turns out to be competitive with the best current spe-
cialized Steiner tree algorithms developed in operations research. Our positive
results demonstrate that it is practical to use domain-independent logical repre-
sentations with a general search procedure to solve interesting classes of hard
combinatorial search problems.

1 Introduction

Traditional satisfiability-testing algorithms are based on backtracking search (Davis
and Putnam 1960). Surprisingly few search heuristics have proven to be generally

1

useful; increases in the size of problems that can be practically solved have come
mainly from increases in machine speed and more efficient implementations (Trick
and Johnson 1993). Selman, Levesque, and Mitchell (1992) introduced an alternative'
approach for satisfiability testing, based on stochastic local search. This algorithm,
called GSAT, is only a partial decision procedure - it cannot be used to prove that a
formula is unsatisfiable, but only find models of satisfiable ones - and does not work
on problems where the structure of the local search space yields no information about
the location of global optima (Ginsberg and McAllester 1994). However, GSAT is
very useful in practice. For example, it is the only approach that can solve certain
very large, computationally hard, formulas derived from circuit synthesis problems
(Selman, Kautz, and Cohen 1994). It can also solve randomly generated Boolean
formulas that are two orders of magnitude larger than the largest handled by any
current backtracking algorithm (Selman and Kautz 1993a).

The success of stochastic local search in handling formulas that contain thou-
sands of discrete variables has .made it a viable approach for directly solving logical
encodings of interesting problems in AI and operations research (OR), such as cir-
cuit diagnosis and planning (Selman and Kautz 1993b). Thus, at least on certain
classes of problems, it provides a general model-finding technique that scales to
realistically-sized instances, demonstrating that the use of a purely declarative, log-
ical representation is not necessarily in conflict with the need for computational
efficiency. One issue that arises in studying this approach to problem-solving is
developing problem encodings where a solution corresponds to a satisfying model
(Kautz and Selman 1992), instead of having a solution correspond to a refutation
proof (Green 1969). But for some kinds of problems no useful encoding in terms of
prepositional satisfiability can be found - in particular, problems that contain both
hard and soft constraints.

Each clause in a CNF (conjunctive normal form) formula can be viewed as a
constraint on the values (true or false) assigned to each variable. For satisfiability, all
clauses are equally important, and all clauses must evaluate to "true" in a satisfying
model. Many problems, however, contain two classes of constraints: hard constraints
that must be satisfied by any solution, and soft constraints, of different relative
importance, that may or may not be satisfied. In the language of operations research,
the hard constraints specify the set of feasible solutions, and the soft constraints
specify a function to be optimized in choosing between the feasible solutions. When
both kinds of constraints are represented by clauses, the formula constructed by
conjoining all the clauses is likely to be unsatisfiable. In order to find a solution
to the original problem using an ordinary satisfiability procedure, it is necessary to
repeatedly try to exclude different subsets of the soft constraints from the problem
representation, until a satisfiable formula is found. Performing such a search through
the space of soft constraints, taking into account their relative importance, can be
complex and costly in a practical sense, even when the theoretical complexity of the

entire process is the same as ordinary satisfiability.
A more natural representation for many problems involving hard and soft con-

straints is weighted maximum satisfiability (MAX-SAT). An instance of weighted
MAX-SAT consists of a set of propositional clauses, each associated with a positive
integer weight. If a clause is not satisfied in a truth assignment, then it adds the cost
of the weight associated with the clause to the total cost associated with the truth
assignment. A solution is a truth assignment that maximizes the sum of the weights
of the satisfied clauses (or, equivalently, that minimizes the sum of the weights of the
unsatisfied clauses). Note that if the sum of the weights of all clauses that correspond
to the soft constraints in the encoding of some problem is /, and each hard constraint
is represented by a clause of weight greater than /, then assignments that violate
clauses of total weight I or less exactly correspond to feasible solutions to the original
problem. The basic GSAT algorithm can be generalized, as we will show, to handle
weighted MAX-SAT in an efficient manner. An important difference between simple
SAT and weighted MAX-SAT problems is that for the latter, but not the former, near
(approximate) solutions are generally of value.

The main experimental work described in this paper is on Boolean encodings of
network Steiner tree problems. These problems have many applications in network
design and routing, and have been intensively studied in operations research for
several decades (Hwang et al. 1992). We worked on a well-known set of benchmark
problems, and compared our performance with the best published results. One of our
implicit goals in this work is to develop representations and algorithms that provide
state-of-the-art performance, and advance research in both the AI and operations
research communities (Ginsberg 1994).

Not all possible MAX-SAT encodings of an optimization problem are equally
good. For practical applications, the final size of the encoding is crucial, and even a
low-order polynomial blowup in size may be unacceptable. The number of clauses
in a straightforward propositional encoding of a Steiner tree problem is quadratic in
the (possibly very large) number of edges in the given graph. We therefore developed
an alternative encoding, that is instead linear in the number of edges. This savings
is not completely free, because the alternative representation only approximates the
original problem instance - that is, theoretically it might not lead to an optimal
solution. Nonetheless, the experimental results we have obtained using this encoding
and our stochastic local search algorithm are competitive in terms of both solution
quality and speed with the best specialized Steiner tree algorithms from the operations
research literature.

The general approach used in our alternative representation of Steiner problems
is to break the problem down into small, tractable subproblems, pre-compute a set
of near-optimal solutions to each subproblem, and then use MAX-SAT to assemble
a global solution by picking elements from the pre-computed sets. This general
technique is applicable to other kinds of problems in AI and operations research.

In a sense this paper describes a line of research that has come full circle: much of
the initial motivation for our earlier work on local search for satisfiability testing came
from work by Adorf and Johnston (1990) and Minton et al. (1990) on using local
search for scheduling problems that did involve both hard and soft constraints. Thus,
we turned a method for optimization problems into one for decision problems, and
now are returning to optimization problems. However, instead of creating different
local search algorithms for each problem domain, we translate instances from different
domains into weighted CNF, and use one general, highly optimized search algorithm.
Thus we retain the use of purely propositional problem representations, and our
finely-tuned randomized techniques for escaping from local minima during search.

2 A Stochastic Search Algorithm

The GSAT procedure mentioned in the introduction solves satisfiability problems by
searching through the space of truth assignments for one that satisfies all clauses
(Selman, Levesque, and Mitchell 1992). The search begins at a random complete
truth assignment. The neighborhood of a point in the search space is defined as the set •
of assignments that differ from that point by the value assigned to a single variable.
Each step in the search thus corresponds to "flipping" the truth-value assigned to a
variable. The basic search heuristic is to move in the direction that maximizes the
number of satisfied clauses. Similar local-search methods to satisfiability testing has
also been investigated by Hanson and Jaumard (1990) and Gu (1992).

Thus GSAT can already be viewed as a special kind of MAX-SAT procedure,
where all clauses are treated uniformly, and which is run until a completely satisfying
model is found. We have experimented with many modifications to the search heuris-
tic, and currently obtain the best performance with the following specific strategy for
picking a variable to change. First, a clause in the problem instance that is unsatisfied
by the current assignment is chosen at random - the variable to be flipped will come
from this clause. Next, a coin is flipped. If it comes up heads (with a probability
that is one of the parameters to the procedure), then a variable that appears in the
clause is chosen at random. This kind of choice is called a "random walk". If the
coin comes up tails instead, then the algorithm chooses a variable from the clause
that, when flipped, will cause as few clauses as possible that are currently satisfied to
become unsatisfied. This kind of choice is called a "greedy" move. Note that flipping
a variable chosen in this manner will always make the chosen clause satisfied, and
will tend to increase the overall number of satisfied clauses - but sometimes will in
fact decrease the number of satisfied clauses. This refinement of GSAT was called
"WSAT" (for "walksat") in Selman, Kautz, and Cohen (1994).

The weighted MAX-SAT version of Walksat, shown in Fig. 1, uses the sum of
the weights of the affected clauses in computing the greedy moves. The parameter

procedure Walksat(WEIGHTED-CLAUSES, HARD-LIMIT, MAX-FLIPS,
TARGET, MAX-TRIES, NOISE)

M := a random truth assignment over the variables that
appear in WEIGHTED-CLAUSES;

HARD-UNSAT := clauses not satisfied by M with weight > HARD-LIMIT;
SOFT-UNSAT := clauses not satisfied by M with weight < HARD-LIMIT;
BAD := sum of the weight of HARD-SAT and SOFT-UNSAT;
TOPLOOP: for I := 1 to MAX-TRIES do

for J := 1 to MAX-FLIPS do
if BAD < TARGET then break from TOPLOOP; endif
if HARD-UNSAT is not empty then

C := a random member of HARD-UNSAT;
else C := a random member of SOFT-UNSAT; endif
Flip a coin that has probability NOISE of heads;
if heads then

P := a randomly chosen variable that appears in C;
else

for each proposition Q that appears in C do
BREAKCOUNT[Q] := 0;
for each clause C' that contains Q do

if C is satisfied by M, but not
satisfied if Q is flipped then
BREAKCOUNT[Q] + = weight of C'

endif
endfor

endfor
P := a randomly chosen variable Q that appears in C and whose

BREAKCOUNT[Q] value is minimal;
endif
Flip the value assigned to P by M;
Update HARD-UNSAT, SOFT-UNSAT, and BAD;

endfor
endfor
print "Weight of unsatisfied clauses is", BAD;
print M;
end Walksat.

Figure 1: The Walksat procedure for weighted MAX-SAT problems.

HARD-LIMIT is set by the user to indicate that any clause with that weight or greater
should be considered to be a hard constraint. The algorithm searches for MAX-FLIPS
steps, or until the sum of the weights of the unsatisfied clauses is less than or equal
to the TARGET weight. If the target is not reached, then a new initial assignment is
chosen and the process repeats MAX-TRIES times. The parameter NOISE controls
the amount of stochastic noise in the search, by adjust the ratio of random walk and
greedy moves. The best performance on the problems in this paper was found when
NOISE =0.2.

Walksat is biased toward satisfying hard constraints before soft constraints. How-
ever, while working on the soft constraints, one or more hard constraints may again
become unsatisfied. Thus, the search proceeds through a mixture of feasible and
infeasible solutions. This is in sharp contrast with standard operations research meth-
ods, which generally work by stepping from feasible solution to feasible solution.
Such methods are at least guaranteed (by definition) to find a local minimum in the
space of feasible solutions. On the other hand, there is no such guarantee for our
approach. It therefore becomes an empirical question as to whether local search on a
weighted MAX-SAT encoding of problems with both hard and soft constraints would
work even moderately well.

Our initial test problems were encodings of airline scheduling problems that
had been studied by researchers in constraint logic programming (CLP) (Lever and
Richards 1994). The results were encouraging; we found solutions approximately 10
to 100 times faster than the CLP approach. However, for the purposes of the paper,
we wished to work on a larger test set, that had been studied more intensively over a
longer period of time. We found such a set of benchmark problems in the operations
research community, as we describe in the next section.

3 Steiner Tree Problems

Network Steiner tree problem have long been studied in operations research (Hwang
et al. 1992), and many well-known, hard benchmark instances are available. The
problems we used can be obtained by ftp from the OR Repository at Imperial College
(mscmga.ms.ic.ac.uk). We ran our experiments on these problems so that our results
could be readily compared against those of the best competing approaches. A network
Steiner tree problem consists of an undirected graph, where each edge is assigned a
positive integer cost, and a subset of its nodes, called the Steiner nodes. The goal
is to find a subtree of the graph that spans the Steiner nodes, such that the sum of
the costs of the edges of the tree is minimal. Fig. 2 shows an example of a Steiner
problem. The top figure shows the graph, where the Steiner nodes are nodes 1, 2, 3,
6, and 7. The weights are given along the edges. The bottom figure shows a Steiner
tree connecting those nodes. Note that the solution involves two non-Steiner nodes

Figure 2: An example of a network Steiner problem and its solution.

(4 and 5). In general, finding such a Steiner tree is NP-complete.
There is a direct translation of Steiner problems into MAX-SAT. The encoding

requires 2IEI2 variables, where IEI is the number of edges in the entire graph. While this
encoding is of theoretical interest, it is not practical for realistically-sized problems:
even a quadratic blowup in the number of variables relative to the number of edges in
original instance is simply too large. As we will see below, many of the problems we
wish to handle contain over 10,000 edges, and we cannot hope to process a formula
containing 100,000,000 variables! Therefore we developed an alternative encoding
of Steiner tree problems that is only linearly dependent on the number of edges.

The intuition behind our encoding is that the original problem is broken down into a
set of tractable subproblems; a range of near-optimal solutions to the subproblems are
pre-computed; and then MAX-SAT is used to combine a selection of solutions to the
subproblems to create a global solution. For Steiner tree problems, the subproblems
are smaller Steiner trees that connect just pairs of nodes from the original Steiner set.
Such two-node Steiner problems are tractable, because a solution is simply the shortest
path between the nodes. A range of near-optimal solutions, i.e. the shortest path,
the next shortest path, etc., can be generated using a modified version of Dijkstra's

algorithm. This approach actually only approximates the original problem instance,
because we do not generate all paths between pairs of nodes, but only the k shortest
paths for some fixed k. (We discuss the choice of k below.) Pathological problem
instances exist that require very non-optimal subproblem solutions. However, we
shall see that the approach works quite well in practice.

We illustrate the encoding using the example from Fig. 2. First, we introduce a
variable for each edge of the graph. For example, the edge between nodes 1 and 2 is
represented by variable eit2. The interpretation of the variable is that if the variable
is true, then the corresponding edge is part of the Steiner tree. To capture the cost
of including this edge in the tree, we include a unit clause of the form (^e^) with
weight 2, the cost of the edge. This clause is soft constraint. Note that when this
edge is included in the solution, i.e., eli2 is true, this clause is unsatisfied, so the
truth-assignment incurs a cost of 2. Similarly we have a clause for every edge.

Second, we list the Steiner nodes in an arbitrary order, and then for each successive
pair of nodes in this list, we generate the k shortest paths between the nodes. We
associate a variable with each path. For example, if k = 2, then the two shortest paths
between Steiner nodes 1 and 2 are 1-2 and 1-^-2. We name the variables pl>2 and
Pl,4,2-

Third, we introduce hard constraints that assert that a solution must contain a
path between each pair of Steiner nodes. For example, the clause (pi>2 V ^1,4,2) is a
hard constraint, and therefore assigned a high weight (greater than the sum of all soft
constraints). Hard constraints also assert that if a path appears in a solution, then the
edges it contains appear. For example, for the path 1-4-2, we introduce the clauses
(pi,4,: D e1|4) and (pi,4,2 D e4,i)- This concludes our encoding.

The encoding requires IEI+&(ISI— 1) variables, where IEI is the number of edges
in the graph, ISI is the number of Steiner nodes, and k is the number of shortest paths
pre-computed between each pair. The total number of clauses is 0(\E\ + kL(\S\-1)),
where L is the maximum number of edges in any of the pre-computed paths.

4 Empirical Results

A good description of our benchmark problems appears in Beasley (1989). The
set contains four classes (B, C, D, E) of problem instances of increasing size and
complexity. We omitted class B because the problems are small and easy to solve.
Each class has 20 instances.

Tables 1, 2, and 3 contain our results, as well as those of the two best specialized
Steiner tree algorithms, as reported Beasley (1989) and Chopra et al. (1992). In the
table, IVI denotes the number of nodes in the graph, IEI the number of edges, and ISI
the number of Steiner nodes. The columns labeled "Soln" give the weight of the best
Steiner tree found by each method. The solutions found by Chopra et al. are globally

8

optimal, except for instance El8. For some problems we also give the second best
solution (labeled "Soln2") found by Walksat, to indicate how effective the procedure
can be in practice, since it may locate a near-global optimum in a very short time.

Walksat ran on a SGI Challenge with a 150 MHz MIPS R4400 processor.
Beasley's algorithm ran on a Cray XMP, and Chopra's on a Vax 8700. A hyphen in
the table in the case of Beasley's algorithm indicates that the problem was not solved
after 21,600 seconds; in the case of Chopra's algorithm, it indicates that problem was
not solved after 10 days.

We have not attempted to adjust the numbers for machine speed. Caution must
be used in comparing different algorithms running on radically different kinds of
hardware (the SGI has a RISC architecture, the Vax is CISC, and the Cray is a
parallel vector processing machine). The SGI is rated is 136 MIPS, while the Vax
is rated at 6 MIPS. This would indicate a ratio of 22 in relative speed; however, at
least one user of both machines (Johnson 1994) reports a maximum speedup factor
of 15 on combinatorial algorithms, with as small a factor as 3 on large instances.
The Cray is rated 230 peak MIPS, which would appear to be faster than the SGI;
however, Cray Research also reports that code that performs no vector processing at
all runs at only 30 MIPS. Thus, differences in hardware could account for a speedup
of between 3 and 22 when comparing Chopra's VAX to our SGI, and of between 0.6
and 4.5 when comparing Beasley's Cray to our SGI. In any case, this indicates that
all of the differences in performance described below cannot be attributed entirely to
differences in machine speed.

We found that we could obtain good solutions with a value of k, the number of
pre-computed paths between pairs of nodes, of up to 150 for the smaller instances
(< 10 Steiner nodes), and up to 20 for the larger instances. The timing results for
Walksat are averaged over 10 runs.

The running times in the table do not include the time to pre-compute the set
of paths between successive Steiner nodes. This is reasonable because in practice
one often deals with a fixed network, and wants to compute Steiner trees for many
different subsets of nodes. For example, in teleconferencing applications, the network
is fixed, and each problem instance involves finding a Steiner tree to connect a set of
sites. Given a fixed network, one can pre-compute, using Dijkstra's algorithm, sets
of paths between every pair of nodes.

From the tables we can see that for problems with up to 10 Steiner nodes, Walksat
usually find an optimal solution at least as fast as the other two approaches, even
allowing differences in machine speeds. For example, for Dl and D2, Walksat is
about 100 times faster than the other two in reaching the global optimum. For D6,
Walksat runs about 50 times faster than Beasley and 30 times faster than Chopra. The
difference is particularly dramatic for El, where Walksat finds the optimal solution
in less than 1 second, and Beasley and Chopra both take over 1,000 seconds. On
E2, Walksat takes about 800 seconds to reach the global optimum 214, which is

Problem Parameters Beasley Chopra et al. Walksat
ID \V\ \E\ \s\ Soln CPU sees Soln CPU sees Solnl CPU Soln2 CPU

(Cray XMP) (Vax 8700) (SGI) (SGI)
Cl 500 625 5 85 113.57 85 27.3 85 1.11
C2 10 144 5.84 144 811.7 144 72.69 146 30.57
C3 83 766 152.78 754 543.4 808 0.05
C4 125 1094 3.61 1079 509.6 1128 0.09
C5 250 1594 2.73 1579 473.9 1654 0.12
C6 1000 5 55 48.55 55 48.9 55 3.41
Cl 10 106 4.44 102 83.2 102 3.02 103 2.95
es 83 524 8.63 509 674.4 553 0.07
C9 125 722 198.97 707 1866.3 754 0.09
CIO 250 1112 4.53 1093 245.6 1169 0.16
Cll 2500 5 34 188.02 32 333.3 32 0.44 34 0.22
C12 10 48 25.04 46 119.8 46 65.64 47 39.41
C13 83 265 166.53 258 9170.3 286 0.23
C14 125 336 8.67 323 211.7 349 0.25
C15 250 563 7.30 556 210.6 587 0.40
C16 12500 5 11 32.37 11 10.1 11 6.25
C17 10 20 24.17 18 98.0 18 19.50 19 6.52
C18 83 123 104.34 113 45847.7 130 4.89
C19 125 155 86.48 146 116.9 165 5.25
C20 250 269 157.80 267 14.9 278 5.79

Table 1: Computation Results for Beasley's C class Steiner Tree Problems

comparable to Chopra's 6000 seconds (a ratio of 7.5). Walksat takes only about 28
seconds to reach a tree with weight 216, compared to Beasley who takes 7000 seconds
to reach only 231. On E6, Walksat takes less than 2 seconds, compared to over 670
seconds for Chopra. A near-optimal solution takes less than 1 seconds, compared to
1700 seconds for Beasley.

Surprisingly, Walksat can locate some of the optimal and near-optimal solutions
for the large E-class instances that cannot be found by Beasley in a reasonable amount
of time. For example, for E12, Walksat finds a local optima of 68 which was not
reached by Beasley within the time limit of 21,600 seconds. For E7, Walksat finds
the global optimum of 145, while Beasley only reaches 157.

On problems with a larger numbers of Steiner nodes, Walksat usually produces
less optimal solutions than the other two methods. The problem Walksat has on
instances with a large number of Steiner nodes may due to the fact that the MAX-
SAT encodings simply become too large to be processed efficiently. (For example,

10

Problem Parameters Beasley Chopra et al. Walksat
ID |V| \E\ |5| Soln CPU sees Soln CPU sees Solnl CPU Soln2 CPU

(Cray XMP) (Vax 8700) (SGI) (SGI)
Dl 1000 1250 5 107 226.27 106 475.6 106 2.61 107 0.85
D2 10 228 252.47 220 283.5 220 1.54 227 0.98
D3 167 1599 21.85 1565 2290.1 1646 0.21
D4 250 2170 11.71 1935 3529.0 2044- 0.28
D5 500 3360 11.76 3250 810.6 3419 0.53
D6 2000 5 71 4065.69 67 2339.5 67 75.51 70 12.37
D7 10 103 18.71 103 99.7 103 0.47
D8 167 1108 475.14 1072 6984.5 1180 0.35
D9 250 1684 243.48 1448 4629.7 1585 0.41
D10 500 2235 20.21 2110 1312.1 2219 0.72
DU 5000 5 31 3290.48 29 1374.4 29 2.78 30 2.07
D12 10 42 48.04 42 305.0 42 0.79
D13 167 520 36.06 500 1864.0 544 1.07
D14 250 688 443.26 667 3538.4 740 0.74
D15 500 1208 32.25 1116 1409.7 1193 1.70
D16 25000 5 14 161.43 13 871.3 13 18.29
D17 10 25 277.20 23 6965.2 23 735 24 20
D18 167 247 222.15 223 245192.1 262 20.48
D19 250 384 256.15 310 878.3 359 21.52
D20 500 544 1023.60 537 47.1 558 24.45

Table 2: Computation Results for Beasley's D class Steiner Tree Problems

the number of flips per second goes down significantly on very large formulas.)
Nonetheless, given the fact that Walksat is a completely general algorithm, as opposed
to the specialized algorithms of Beasley and Chopra, it performs surprisingly well on
these hard benchmark problems.

It is important to note that Walksat scales up to problems based on large graphs,
especially when the set of Steiner nodes is relatively small. This should be contrasted
with some other local-search style approaches to solving Steiner trees using simulated
annealing (Dowsland 1991) and genetic algorithms (Kapsalis et al. 1993). Despite
the fact that these local search algorithms were designed specifically for solving
Steiner problems, they can only handle the smallest instances in the B and C classes.
This has led Hwang et al. (page 172) to conclude that simulated annealing and hill-
climbing (a form of local search) are ill-suited for Steiner tree problems. However,
our work demonstrates that local search can in fact be successful for Steiner problems.
Our positive results are due to both an effective problem encoding and the use of an

11

Problem Parameters Beasley Chopra et al. Walksat

ID \V\ \E\ \s\ Soln CPU sees

(Cray XMP)

Soln CPU sees

(Vax 8700)

Solnl CPU

(SGI)

Soln2 CPU

(SGI)

El 1000 3250 5 115 1116.80 111 1149.6 111 0.54 113 0.35
E2 10 231 7124.10 214 6251.2 214 817.70 216 28.13

E3 417 4131 1346.05 4013 26468.4 4282 1.43

E4 625 5208 378.66 5101 46007.6 5398 2.10

E5 1250 8413 98.22 8128 12564.1 8518 3.95

E6 5000 5 78 1760.49 73 678.0 73 1.71 78 0.81

E7 10 157 ' 145 27124.0 145 5170.50 149 275.62

E8 417 2733 4459.30 2640 118617.5 2899 2.05

E9 625 3721 18818,53 3604 24527.8 3913 2.65

E10 1250 5899 311.57 5600 39260.7 5957 4.94

Eil 12500 5 39 3061.45 34 1900.6 34 622.71 35 7.47

E12 10 69 67 7199.7 68 5325.67 69 374.79

E13 417 1336 1280 207058.6 1417 7.21
E14 625 1773 1732 29262.6 1884 8.69

E15 1250 3008 457.98 2784 7666.0 3125 157.67

E16 62500 5 15 7880.40 15 179.0 15 352.26 16 117.26

E17 10 26 445.69 25 36039.9 27 160.92

E18 417 840 (563.03) — 667 129.33

E19 625 923 758 6371.8 853 132.70

E20 1250 1376 14037.13 1342 272.2 1400 160.97

Table 3: Computation Results for Beasley's E class Steiner Tree Problems

efficient implementation of our search procedure with a good stochastic technique for
escaping from local minima.

5 Discussion and Conclusions

In this paper, we have shown how to adapt Walksat, a variant of the GS AT satisfiability
testing algorithm, to handle weighted MAX-SAT problems. One of the problems
in encoding optimization problems as propositional satisfiability problems is the
difficulty of representing both hard and soft constraints. In a weighted MAX-SAT
encoding, hard constraints simply receive a high weight (for example, larger than
the sum of the soft constraints). Any solution where the sum of the weights of the
violated clauses is less than that of any hard constraint is guaranteed to be feasible
(i.e., satisfies all hard constraints).

Another problem with translating optimization problems into satisfiability prob-

12

lems is handling numeric information. Even though in principle a polynomial trans-
formation often exists, SAT encodings of realistic problem instances may become too
large to solve. In our weighted MAX-SAT encoding, much of the numeric information
in the problem instances can be captured effectively in the clause weights.

In order to test this approach, we considered a set of hard benchmark Steiner tree
problems, and compared our results to specialized state-of-the-art algorithms. We
chose the Steiner tree problem because of its long history and the public availability of
a well-established set of benchmark instances. Our results showed that our weighted
MAX-SAT strategy is competitive with specialized algorithms, especially on (possi-
bly large and computationally difficult) instances involving small numbers of Steiner
nodes. We must stress that we are not arguing that our approach is the best way to
find Steiner trees. It is certainly the case that every particular class of combinatorial
problems has some structure that can be best exploited by some specialized algorithm.
The significance of our experiments is that they showed good performance using a
completely general algorithm, that incorporates no heuristics specific to Steiner tree
problems.

As mentioned above, the search performed by Walksat proceeds through truth-
assignments that correspond to both feasible and infeasible solutions to the original
optimization problem. This is an inherent aspect of our approach, simply because fea-
sible solutions of the original problem may be several variable "flips" apart. Note that
in constructing specialized local search algorithms for particular problem domains,
one generally makes larger changes and only moves between feasible solutions. It is
therefore surprising to discover how well Walksat performs. It is important to note
that negative performance results would have argued against our overall approach of
using a domain-independent logical representation with a general search procedure
such as Walksat. •

Part of the success of the approach is due to the particular MAX-SAT encoding
we developed for the problems. In particular, our encoding is significantly shorter
than a more direct one. The general approach we used, which is based on combining
solutions from tractable subproblems, could also be useful for encoding other kinds
of optimization problems. In particular, Crawford and Baker (1994) have observed
that a direct SAT encoding of job-shop scheduling problems leads to formulas that are
very large and hard to solve. It would be interesting to see if our piecewise encoding
technique is applicable in the job-shop scheduling domain.

In conclusion, we have demonstrated that the use of efficient MAX-SAT encodings
with a domain-independent stochastic local search algorithm is a promising approach
for solving hard optimization problems in AI and operations research.

13

References

Adorf, H. M., and Johnston, M. D. (1990) A discrete stochastic neural network algorithm
for constraint satisfaction problems. Proceedings of the International Joint Conference
on Neural Networks, San Diego, CA.

Beasley, J. (1989) An SST-based algorithm for the Steiner Tree problems in graphs. Net-
works 19, 1-16.

Chopra, S., Gorres, E., and Rao, M. (1992) Solving the Steiner Tree problem on a graph
using branch and cut. ORSA Journal on Computing 4(3), 3-18.

Crawford, J. M., and Baker, A.B. (1994). Experimental results on the application of sat-
isfiability algorithms to scheduling problems. Proceedings AAA1-94, Seattle, WA,
1092-1097.

Davis, M, and Putnam, H. (1960). A computing procedure for quantification theory. J.
Assoc. Comput. Mach. 7,201-215.

Dowsland, K. (1991) Hill-climbing simulated annealing and the Steiner problem in graphs.
Eng. Opt. 17,91-107.

Ginsberg, M. and McAllester, D. (1994) GSAT and dynamic backtracking. Proceedings
KR-94, Bonn, Germany, 226-237.

Ginsberg, M. (1994) Organizational meeting for AI/OR initiative, Oct. 1994.

Green, C. (1969) Application of theorem proving to problem solving. Proceedings UCAl-
69, Washington, DC, 219-239.

Gu, J. (1992) Efficient local search for very large-scale satisfiability problems. Sigart Bul-
letin 3(1), 8-12.

Hansen, P., and Jaumard, B. (1990) Algorithms for the maximum satisfiability problem.
Computing 44, 279-303.

Hwang, F.K, Richards, D.S., and Winter, P. (1992) The Steiner Tree Problem, Amsterdam:
North-Holland (Elsevier Science Publishers).

Johnson, D.S., (1994) Personal communication.

Kapsalis, A., Ray ward-Smith, V., and Smith, G. (1993) Solving the graphical Steiner tree
problem using genetic algorithms. J. Oper. Res. Soc. 44(4), 397-406.

Kautz, H., and Selman, B. (1992). Planning as satisfiability. Proceedings ECAI-92, Vienna,
Austria.

14

Lever, J., and Richards, B. (1994) A CLP approach to flight scheduling problems. Proceed-
ings of the International Symposium on Methodologies for Intelligent Systems, 1994.

Minton, S., Johnston, M.D., Philips, A.B., and Laird, P. (1990) Solving large-scale constraint
satisfaction an scheduling problems using a heuristic repair method. Proceedings
AAA1-90, Boston, MA, 17-24.

Papadimitriou, C.H., and Steiglitz, K. (1982) Combinatorial Optimization. Englewood Cliff's,
NJ: Prentice-Hall.

Selman, B., Levesque, H.J., and Mitchell, D.G. (1992) A new method for solving hard sat-
isfiability problems. Proceedings AAAI-92, San Jose, CA, 440-446.

Selman, B., and Kautz, H. (1993a) Domain-independent extensions to GSAT: solving large
structured satisfiability problems. Proceedings IJCAI-93, Chambery, France, 290-
295.

Selman, B. and Kautz, H. (1993b) An empirical study of greedy local search for satisfiability
testing. Proceedings AAAI-93, Washington, DC, 46-51.

Selman, B., Kautz, H., and Cohen, B. (1994) Noise strategies for local search. Proceedings
AAAI-94, Seattle, WA, 1994.

Trick, M., and Johnson, D.S. (Eds.) (1993) Working notes of the DIMACS Algorithm Im-
plementation Challenge, Rutgers University, New Brunswick, NJ.

15

An approach to the Maximum Satisfiability Problem that combines
heuristics with Branch and Cut.

Brian Borchers1 and John E. Mitchell2

Given a logical formula in conjunctive normal form (a conjunction of clauses,
each of which is a disjunction of literals), the satisfiability problem is the prob-
lem of determining whether or not there is an assignment of the variables in
the logical formula that makes the formula true. In the related maximum sat-
isfiability problem, the objective is to find an assignment of the variables that
maximizes the number of satisfied clauses.

Classical approaches to the satisfiability problem include the Davis-Putnam
procedure (Davis and Putnam 1960), and resolution (Robinson 1965). More re-
cently, several researchers (Blair et al. 1986, Harche et al. 1994, Hooker 1988a,
Hooker 1988b, Hooker 1989) have formulated satisfiability problems as inte-
ger programming problems and then used branch and bound or branch and
cut algorithms to solve the integer programming formulation of the satisfiabil-
ity problem. Hooker (1988a) points out that the Davis-Putnam procedure is
equivalent to the branch and bound approach, while resolution is equivalent to
a simple cutting plane approach.

Variations on this theme include the column subtraction algorithm for solv-
ing the integer programming problem (Harche et al. 1994), and the use of horn
clause resolution as a lower bounding technique within the branch and bound
procedure (Gallo and Urbani 1989). However, all of these methods are aimed
specifically at the satisfiability problem rather than the maximum satisfiability
problem.

Other researchers (Hansen and Jaumard 1990, Selman et al. 1992, Resende
and Feo 1994) discuss heuristics that are very effective in finding solutions to
"yes" instances of the satisfiability problem and in finding good solutions to
the maximum satisfiability problem. However, these algorithms are unable to
prove the unsatisfiability of "no" instances of the satisfiability problem and they
are unable to prove the optimality of solutions to the maximum satisfiability
problem.

We have developed an approach to the maximum satisfiability problem that
combines heuristics with integer programming techniques to obtain provably op-
timal solutions to maximum satisfiability problems. In this approach, a heuristic
is first used to obtain a good solution to the maximum satisfiability problem. We
then formulate the maximum satisfiability problem as an integer programming
problem and use a branch and cut approach to solve the integer programming

JNew Mexico Tech, Department of Mathematics, Socorro, NM 87801, borchers@nmt.edu
2Rensselaer Polytechnic Institute, Department of Mathematical Sciences, Troy NY 12180,.

mitchj@rpi.edu

problem. The heuristic solution provides an incumbent solution that improves
the performance of the branch and cut algorithm.

The main difference between our approach and branch and cut approaches
to the satisfiability problem is in the formulation of the satisfiability problem as
an integer programming problem. The satisfiability problem can be formulated
as an integer feasibility problem:

Ey.ec+^ + Ey.ec-t1"^) > 1 j = l...k
Xi 6 {0,1} i = l..n ('

Or, we can introduce an auxiliary variable w and obtain the integer program-
ming problem:

min w

subject to E„.-6c+ xi + T,yi€c- (x " xi) + w ^ 1 j = l... k
Xi e {0,1} i = l..n ('
w > 0

However, in order to solve the the maximum satisfiability problem, we need
to introduce an auxiliary variable for each clause:

mm

subject to Ey,€c+ xi + Eyi6C; -(1-Xi) + Wj > l j = i...k

Xi e {0,1} i = l..n
Wj > 0 j = l...k

(3)

This formulation of the maximum satisfiability problem was examined by
Cheriyan et al. (1994) in the special case of the two satisfiability problem in
which each clause is restricted to two literals. For this special case, they devel-
oped a cutting plane algorithm that was able to solve large instances of the two
satisfiability problem without resorting to branch and bound.

It is well known that the LP relaxation of (1) or (2) is a very weak formulation
of the problem. By fixing the variables in clauses with only one variable at zero
or one as needed to satisfy that clause and by setting each of the remaining Xi
to 1/2, we can easily obtain a feasible solution. Harche et al. (1994) note that
simple branch and bound on these integer programming formulations is exactly
equivalent to the Davis-Putnam procedure with unit clause tracking, so that
solving the LP relaxations serves no purpose except to find integer solutions.

In (3), the LP relaxation is not so useless. For example, consider the clauses:

Xl

Xi V X2

Xi Vx2

The LP relaxation of formulation (1) is infeasible. The LP relaxation of formu-
lation (2) is feasible with a minimum value of 1/2, indicating that the clauses
are not satisfiable. The LP relaxation of (3) has an optimal value of 3/2, indi-
cating that at least two clauses must remain unsatisfied in any assignment of
the variables.

We have implemented a preliminary version of our algorithm which uses the
GSAT procedure (Selman et al. 1992) to obtain an incumbent solution to the
Max-Sat problem, formulates the Max-Sat problem as an integer programming
formulation using (3), tightens the formulation with resolution cuts and then
uses the CPLEX branch and bound routine to solve the integer programming
problem. We have used this code to solve a number of "no" instances of the
satisfiability problem, including hard random 3-cnf problems with as many as
140 variables and 630 clauses and problems from the DIM ACS collection of
benchmarks with as many as 435 variables and 1037 clauses. In our experi-
ence, formulation (3) is not significantly harder to solve than formulation (1)
or formulation (2). Furthermore, the good incumbent solutions provided by the
GSAT heuristic are often helpful in speeding up the branch and bound process.

We are currently in the process of reimplementing this approach using the
MINTO mixed integer programming optimizer. The new code will implement a
true branch and cut procedure. We intend to perform extensive computational
testing on this new implementation of our approach.

References

[1] C. E. Blair, R. G. Jeroslow, and J. K. Lowe. Some results and experi-
ments in programming techniques for propositional logic. Computers and
Operations Research, 13(5):633-645, 1986.

[2] J. Cheriyan, W. H. Cunningham, L. Tuned, and Y. Wang. A linear pro-
gramming and rounding approach to max 2-sat. Technical report, Depart-
ment of Combinatorics and Optimization, University of Waterloo, Water-
loo, Canada N2L 3G1, 1994.

[3] M. Davis and H. Putnam. A computing procedure for quantification theory.
J. Assoc. Comput. Mach., 7:201-215, 1960.

[4] G. Gallo and G. Urbani. Algorithms for testing the satisfiability of propo-
sitional formulae. J. Logic Programming, 7:45-61, 1989.

[5] P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability
problem. Computing, 44:279-303, 1990.

[6] F. Harche, J. N. Hooker, and G. L. Thompson. A computational study of
satisfiability algorithms for propositional logic. ORSA Journal on Comput-
ing, 6:423^135,1994.

[7] J. N. Hooker. A quantitive approach to logical inference. Decision Support
Systems, 4:45-69, 1988.

[8] J. N. Hooker. Resolution vs. cutting plane solution of inference problems:
some computational experience. Operations Research Letters, 7(1): 1-7,
1988.

[9] J. N. Hooker. Input proofs and rank one cutting planes. ORSA Journal on
Computing, 1(3):137-145, 1989.

[10] M. G. C. Reseande and T. A. Feo. A GRASP for Satisfiability. Technical
report, AT&T Bell Laboratories, Murray Hill, NJ, 1994.

[11] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference
on Artificial Intelligence (AAAI-92), San Jose, CA, pages 440-446, July
1992.

On Finding Solutions for Extended Horn Formulas

John S. Schlipf, Fred S. Annexstein*, John V. Franco*, R. P. Swaminathan*t

Department of Computer Science
University of Cincinnati

Cincinnati, OH 45221-0008, USA.

Abstract

In this note we present a simple quadratic-time algorithm for solving the satisfiability problem
for a special class of boolean formulas. This class properly contains the class of extended Horn
formulas [1] and balanced formulas [2, 4]. Previous algorithms for these classes require testing
membership in the classes; however, the problem of recognizing whether a formula is balanced
is complex, and the

problem of recognizing whether a formula is extended Horn is not known to be
polynomial time. Our algorithm requires no such test for membership.

Keywords: Algorithms, satisfiability, extended Horn formulas , balanced matrices, unit resolution

1 Introduction

Chandru and Hooker [1] introduced the class of extended Horn formulas and showed that unit
resolution alone can determine whether or not a given extended Horn formula X has a satisfying
truth assignment. By repeated variable assignments and unit resolutions one can obtain a satisfying
truth assignment for X. The results of' [1] cannot, however, be applied unless it is known that I is
extended Horn. Unfortunately, the problem of recognizing extended

Horn formulas is not known to be solved in polynomial time.

In this paper we extend the observations of Chandru and Hooker to show that extended Horn

formulas can be solved in quadratic time without first having to recognize them. Our observation

is based on the following two facts. The first follows from two results in [1]; the authors may have

been aware of it, but they did not explicitly state it. The second fact follows immediately from the
soundness of resolution.

Below, let T denote any backtrack search tree for an arbitrary formula X where each node
represents a set of clauses closed under unit clause resolution.

•Research partially supported by ONR grant N00014-94-1-0382.

'Research partially supported by NSF grant CCR-93-09470.

Fact 1 If X is extended Horn, then there is a path from every internal node of T to a terminal

node representing a solution.

Fact 2 If the root ofT is an unsatisfiable terminal node (i.e., the empty clause

is an element of the root), then X is unsatisfiable even if I is not an extended Horn formula.

Based on these facts we develop a polynomial-time Davis-Putnam-like algorithm that solves

extended Horn and other classes of formulas. The algorithm has two salient features. First, it

investigates only one path of tree T, starting at the root, using one level unit-resolution look-

ahead to select direction through T. Second, it gives up if the look-aheads in both directions

yield contradictions. On extended Horn formulas, our algorithm will always find a satisfying truth

assignment, if one exists, or verify unsatisfiability if no satisfying assignment is possible. On other

formulas the algorithm will either provide a satisfying truth assignment, verify unsatisfiability,

or give-up. The algorithm also never gives up on hidden Horn formulas, simple extended Horn
formulas [3], hidden extended Horn formulas, and balanced formulas [2].

We start with terminology and a review of extended Horn and balanced formulas. That is
followed by our results and a section stating possible future directions.

2 Extended Horn and balanced formulas

In this paper all formulas are in Conjunctive Normal Form (CNF). Let V = {t>i, V2? ■■■■, vn} be a set
of n variables. A literal is either a variable or its negation and is said to be a positive literal if it

is unnegated or a negative literal if negated. A clause is a disjunction of literals and is represented

here as a set of literals. If a clause has exactly one literal, it is called a unit clause. A formula

is a conjunction of clauses and is represented as a set. A. truth assignment is represented as a set
of variables t with the interpretation that exactly those variables in t have value true and the rest

have value false. A formula is satisfiable iff there is a truth assignment that causes all clauses of X
to have truth value true.

The following is a well known result that is the basis of the Davis-Putnam Procedure.

Fact 3 Let X be a CNF formula and let v be a variable associated with either

a positive or negative literal in X. Let X\ = {C — {v} : C € X, v £ C}, and let I2 = {C — {v} :

C € I,v £ C}. Then X is satisfiable iffXi or X-i is satisfiable. □

Recursive application of Fact 3 results in a usual backtrack search tree where each node rep-

resents a split into at most two subproblems. A path in the tree represents a partial assignment

of truth values to variables. The formula associated with a node p in the tree is denoted by l(p).

A node p of the tree is terminal if and only if either (i) the empty clause is an element of X(p), in

which case X is not satisfied by any truth assignment containing the partial assignment represented

by the path to that node from the root, or (ii) l{p) is the empty set, in which case I is satisfied by

any truth assignment containing the partial assignment represented by the path to that node from
the root. There are many possible backtrack trees for X.

When one resolves on a unit clause, then X\ or J2 or both contain the empty clause. In our

backtrack trees (called T above) we collapse into single nodes all nodes based on successive selections

of variables from unit clauses.

The class of extended Horn formulas was introduced by Chandru and Hooker, motivated by

results from linear programming. The characterization below is taken from [3].

Definition 2.1 Let C be a clause built from a variable set V and let R be a rooted directed tree
with root s (i.e., a directed tree with all edges directed awa y from s) and with edges (uniquely)
labeled with variables in V. Then C is extended Horn w.r.t. R if the positive literals of C label

a dipath P of R and the set of negative literals in C label an edge-disjoint union of dipaths

Q11Q2, ■ ••■, Qt of R with exactly one of the following conditions satisfied:

1- Q11Q2, ■■-,Qt start at the root s.

2- Qi,Q2,..-, <5t_i, (say), start at the root s. and Qt and P start at a vertex q ^ s.

Clause C is simple extended Horn w.r.t. R if it is extended Horn w.r.t. R and Condition 1 above
is satisfied. A CNF formula X is (simple) extended Horn w.r.t. R if each clause C £ 1 is (simple)
extended Horn w.r.t. R. A formula is (simple) extended Horn if it is (simple) extended Horn
w.r.t. some such rooted directed tree R.

Fact 1 follows from two results of Chandru and Hooker:

Lemma 2.1 [1] Suppose I is an extended Horn formula containing no unit or empty clauses. Then
X is satisfiable.

Proof Sketch: Assign truth value true to variables labeling alternating levels of the extended Horn
tree, starting with the second. D

Lemma 2.2 [1] If X is an extended Horn formula and v is any variable, then X\ = {C — {v} : C £

X, v $ C}, and X2 = {C - {v} : C £ I,v $. C} are also extended Horn.

Proof Sketch: Eliminating the variable v corresponds to contracting the edge labeled v in the
extended Horn tree; the extended Horn property is preserved. D

Remark. The definitions of "extended Horn" [1] and "simple extended Horn" [3] required that

the set of negative literals of a clause C be partitioned into disjoint sets Qi,Q2, ■ ■ ■■>Qt, forcing the
corresponding paths to be edge disjoint. It is easy to check that Lemmas 2.1 and 2.2, and thus

also Fact 1, hold even if the <3,s are not disjoint. Thus, their techniques, as well as ours, apply to
a class of formulas larger than the original extended Horn class.

Definition 2.2 Let I denote a CNF formula.

1. In I, reversing the polarity of variable v is the process of replacing every occurrence of v in I

with v and replacing every occurrence of v

with v.

2. The formula X is hidden extended Horn if reversing the polarities of some of its variables will
yield an extended Horn formula.

Another class of formulas for which linear programming motivated a polynomial time satisfia-
bility test is the class of balanced formulas defined by [2, 4].

Definition 2.3 Consider a CNF formula I = {Ci,...,Cm} on a variable set V = {vi,...,vn}.

Associate with X a m x n (0, ±l)-matrix M as follows: The rows of M are indexed on 1 and the
columns are indexed on V such that the entry Af,j is a +1 if VJ G C,, a — 1 if Vj £ C, and a 0

otherwise. Then I is a balanced formula if in every submatrix of M with exactly two nonzero
entries per row and per column, the sum of the entries is a multiple of four.

3 A single look-ahead algorithm

In this section we present an algorithm for solving a class of propositional satisfiability problems
properly containing some well known classes such as extended Horn, hidden extended Horn, hidden

Horn, simple extended Horn, and balanced formulas. This algorithm does not require the recogni-

tion of any members of this class. The algorithm SLUR, which stands for Single Look-ahead Unit
Resolution, is stated after the following algorithm UCR which applies Unit Clause Resolution as
many times as possible to a given CNF formula.

Algorithm UCR (J)

Input: A CNF formula 1

Output: A CNF formula V without unit clauses

While there is a unit clause {/} in I do the following:

If / is a positive literal set 1 := {C - {/} : C G J, / $. C).

Otherwise set I := {C - {/} : C 6 I, 7 £ C}.

Output I.

End Algorithm UCR

Algorithm SLUR(I)

Input: A CNF formula 1

Output: A satisfying truth assignment for the variables in I, "unsatisfiable," or "give up"

Initialize t := 0.
Initialize 1 :=UCR(I).

If 0 G 2" then output "unsatisfiable" and halt.

While J is not empty do the following:

Select a variable r appearing as a literal of 1.

Set Ii :=UCR({C - {v} : C € I, v £ C}).

Setl2:=UCR({C-{v} :C €l,v<£C}).
Ii (I) ell and 0 £ 12 then output "give up" and halt.
Otherwise, if 0 ^ Z\ set J := Z\ .

Otherwise, set t := tö {v}, and set J := J2.

Output to {v : v was eliminated by UCR along the chosen path}.
End Algorithm SLUR

Clearly, the number of search tree nodes visited by SLUR is linear in the size of 2. Hence,

since UCR can be performed in linear time, SLUR is a quadratic time algorithm. The following
propositions assert the correctness of SLUR.

Proposition 3.1 If algorithm SLUR(Z) returns a truth assignment t, then t satisfies I. If algo-

rithm SLUR(I) returns "unsatisfiable," then Z is not satisfiable.

Proof: The first statement follows from Fact 3 and the fact that a truth assignment is returned for
a node p such that lp = 0. The second statement follows from Fact 2. D

We say that algorithm SLUR solves formula J if it never gives up on input I for any order of
variable selection.

Proposition 3.2 Algorithm SLUR solves 1 if! is (i) extended Horn, (ii)'hidden extended Horn,
(Hi) simple extended Horn, or (iv) balanced.

Proof: Part (i) follows from Fact 1. Part (ii) follows from (i) and the fact that reversing the polarity
of literals corresponding

to any variable does not have any significant impact on the operation of SLUR. Part (iii) follows

from the fact that simple extended Horn formulas are a subclass of extended Horn formulas. Part

(iv) follows from the fact that SLUR is an elaboration of the algorithm used to construct satisfying
assignments for balanced formulas in [2]. □

The examples below show that SLUR solves a larger class of formulas than hidden extended

Horn (even as generalized in the Remark following Lemma 2.2), so SLUR cannot be used to

recognize hidden extended Horn formulas. The proofs of both propositions are easy, and therefore

omitted.

Proposition 3.3 Suppose that algorithm SLUR solves formula I, and let I' be a set of clauses

that are logical consequences ofl. Then algorithm SLUR also solves formula J = lU V.

Proposition 3.4 Suppose 1 is a formula containing clauses C\,C2,C3,C4 and a.b are variables

where {a, 6} C d, {a, b} C C2, {a~, b} C C3, and {ä,b} C C4. Then 1 is not hidden extended Horn

(even as generalized in the Remark following Lemma 2.2).

Example 1 Let 2 be any non-empty formula solved by SLUR, let C be any clause in 1, let a,b

be two variable symbols, and let

J = I U {C U {a,&},CU {a,b},CU {ä,b},CU {ä,b}}.

Then SLUR solves J (by Proposition 3.3) but 1' is not hidden extended Horn (by Proposition 3.4).

Example 2 Let V consist of three or more variable symbols and let T be the CNF formula asserting
that exactly an even number of variables of V are true. E.g., for V = {a,b,c} we have

I = {{ä,6,c},{a,6,c},{a,6,c},{ä,6,c}}.

Then Fact 1 holds for 1 trivially since any assignment

of truth values to all but one of the variables in V can be extended to an assignment of truth
values making 1 true — just determine the truth value of the remaining variable by parity. Hence
SLUR solves 1. But I is not hidden extended Horn (by Proposition 3.4). Nor is 1 balanced (by
inspection of the matrix). Moreover, 1 is not equivalent to any proper subset of itself, so 1 cannot
be constructed from a hidden extended Horn or balanced'formula as in Example 1.

4 Conclusion

Researchers have used techniques from linear programming to identify some classes of boolean for-

mulas for which satisfiability can be determined quickly. Such classes include extended Horn and

balanced formulas. Indeed, for these classes, unit clause resolution is sufficient for testing satisfi-

ability. However, the applicability of these techniques is limited by the complexity of identifying

such formulas. In fact, the recognition problems for these formula classes turn out to be interesting
combinatorial challenges. We have shown in this note that, in regards to the problem of finding

satisfying assignments, the-recognition problems are moot. Moreover, this work begins a study of
the much broader class of formulas satisfying Fact 1.

References

[1] V. Chandru and J. N. Hooker. 1991. Extended Horn sets in propositional logic. J. ACM 38,
pp. 205-221.

[2] M. Conforti and G. Cornuejols. 1992. A class of logical inference problems solvable by linear
programming. FOCS 33, pp. 670-675.

[3] R.P. Swaminathan and D.K. Wagner. 1991. The arborescence-realization problem. Discrete
Applied Mathematics, to appear.

[4] K. Truemper, 1978. On balanced matrices and Tutte's characterization of regular matroids,
preprint.

The Progressive Party Problem:
Integer Linear Programming and Constraint

Programming Compared

Barbara M. Smith
Division of Artificial Intelligence, School of Computer Studies,

University of Leeds, Leeds LS2 9JT

Sally C. Brailsford, Peter M. Hubbard and H. Paul Williams
Faculty of Mathematical Studies,

University of Southampton, Southampton S09 5NH

Abstract

Many discrete optimization problems can be formulated as either integer lin-
ear programming problems or constraint satisfaction problems. Although
ILP methods appear to be more powerful, sometimes constraint program-
ming can solve these problems more quickly. This paper describes a problem
in which the difference in performance between the two approaches was par-
ticularly marked, since a solution could not be found using ILP.

The problem arose in the context of organising a "progressive party" at
a yachting rally. Some yachts were to be designated hosts; the crews of
the -remaining yachts would then visit the hosts for six successive half-hour
periods. A guest crew could not revisit the same host, and two guest crews
could not meet more than once. Additional constraints were imposed by the
capacities of the host yachts and the crew sizes of the guests.

Integer linear programming formulations which included all the constraints
resulted in very large models, and despite trying several different strategies,
all attempts to find a solution failed. Constraint programming was tried in-
stead and solved the problem very quickly, with a little manual assistance.
Reasons for the success of constraint programming in this problem are iden-
tified and discussed.

1 Introduction

Discrete optimization problems of the kind that arise in many areas of opera-
tional research can be formulated as constraint satisfaction problems (CSPs).
A CSP consists of a set of variables, each with a finite set of possible values
(its domain), and a set of constraints which the values assigned to the vari-
ables must satisfy. In a CSP which is also an optimization problem, there
is an additional variable representing the objective; each time a solution to
the CSP is found, a new constraint is added to ensure that any future solu-
tion must have an improved value of the objective, and this continues until
the problem becomes infeasible, when the last solution found is known to be
optimal.

Many discrete optimization problems can be modeled using linear con-
straints and integer variables and thus formulated as integer linear program-
ming problems. Operational Research has developed a battery of powerful
techniques for solving such problems, but although the search algorithms
available for solving CSPs are at first sight less powerful than ILP meth-
ods, sometimes constraint programming is a more successful approach (see
[1, 4, 5]). It would be very useful to know which of these competing tech-
niques to choose for a given problem, but the boundary between their areas
of expertise has not yet been fully mapped. This paper describes a further
example of a problem where constraint programming did much better than
ILP; in fact, it proved impossible to solve the problem at all using ILP. The
success of constraint programming in this case appears to be due to a number
of factors in combination; these are discussed in section 8.

The problem is a seemingly frivolous one arising in the context of organ-
ising the social programme for a yachting rally. The 39 yachts at the rally
were all moored in a marina on the Isle of Wight1; their crew sizes ranged
from 1 to 7. To allow people to meet as many of the other attendees as
possible, an evening party was planned at which some of these boats were
to be designated hosts. The crews of the remaining boats would visit the
host boats in turn for six successive half-hour periods during the evening.
The crew of a host boat would remain on board to act as hosts; the crew of
a guest boat would stay together as a unit for the whole evening. A guest
crew could not revisit a host boat, and guest crews could not meet more than
once. Additional capacity constraints were imposed by the sizes of the boats.
The problem facing the rally organiser was that of minimising the number
of host boats, since each host had to be supplied with food and other party
prerequisites.

There were a number of complicating factors in the real-life problem.
For example, the rally organiser's boat was constrained to be a host boat,

^ff the south coast of England.

although it had a relatively small capacity, because he had to be readily
available to deal with emergencies. Two other boats had crews consisting
of parents with teenage children, and these boats were also constrained to
be host boats; the crews split up so that the parents remained on board the
host boat and the children became a "virtual boat" with capacity of zero.
The rally organiser's children formed a third virtual boat, giving 42 boats
altogether. The data for this problem is given in Table 1.

Boat Capacity Crew Boat Capacity Crew Boat Capacity Crew
1 6 2 15 8 3 29 6 2
2 8 2 • 16 12 6 30 6 4
3 12 2 17 ■ 8 2 31 6 2
4 12 2 18 8 2 32 6 2
5 12 4 19 8 4 33 6 2
6 12 4 20 8 2 34 6 2
7 12 4 21 8 4 35 6 2
8 10 1 22 8 5 36 6 2
9 10 2 23 7 4 37 6 4

10 10 2 24 7 4 38 6 5
11 10 2 25 7 2 39 9 7
12 10 3 26 7 2 40 0 2
13 8 4 27 7 4 41 0 3
14 8 2 28 7 5 42 0 4

Table 1: The data

2 The Uncapacitated Problem

If we ignore the capacity constraints, just one host boat can accommodate
any number of guest boats for one time period. For more than one time
period, we can easily find a lower bound on the number of hosts required
from the following argument. If g guest crews visit host i at time 1, then
there must be at least g other hosts to accommodate them in the following
time period. (The guests cannot visit host i again, and must visit g different
hosts so as not to meet another crew again.) In fact, the required #+1 hosts
could each accommodate up to g visiting guest crews at time 1, without the
guest crews meeting again at time 2, giving g(g + 1) guest crews in total.
For more than 2 time periods, g{g + 1) is clearly an upper bound on the
number of guest crews that g + 1 hosts can accommodate. For instance, 6
hosts can accommodate at most 30 guest boats: 7 hosts can accommodate at
most 42. In fact, these limits can be attained (still assuming no constraints
on the hosts' capacities, and provided that the number of time periods is
not greater than the number of hosts, in which case it becomes impossible
for guest crews not to visit the same host more than once), so that with 42
boats in all, we need 7 to be hosts (and therefore 35 to be guests).

However, for the real-life problem, the capacity constraints are binding
and the number of host boats required is at least 13, as shown in Section 3.

3 A Lower Bound

A lower bound on the number of hosts required, taking into account the
capacity constraints, was found by using linear programming to solve a con-
siderable relaxation of the original problem. This simply required that the
guest crews, as a whole, should fit into the total spare capacity of the host
boats2 for one time period.

The same lower bound can alternatively be found from a simple argument:
a necessary condition for feasibility is that the total capacity of the host boats
is not less than the total crew size of all the boats. The smallest number of
hosts that meet this condition is therefore found by ordering the boats in
descending order of total capacity. With this ordering, the first 13 boats can
accommodate all the crews; the first 12 boats cannot.

This suggests that in general the host boats should be chosen in de-
scending order of total capacity. However, this heuristic was not arrived at
until after the linear programming work on the problem had been completed,
partly because it seemed counter-intuitive that the crew sizes should be ig-
nored when selecting the hosts. Moreover, maximising the number of spare
places is not the only consideration when selecting the host boats, since each
crew has to stay together. Provided that the total capacity of the hosts is
large enough, the choice of hosts may need to consider the spare capacity of
each boat and how well different crew sizes fit into it.

Hence the model described below includes the selection of the host boats,
even though in practice the choice of hosts was in large part guided by heuris-
tics.

4 Integer Programming Approach

4.1 First Formulation

The first attempt at finding an optimal solution was made at the University
of Southampton, where the problem was formulated as a zero-one integer
programme. The variables are: Si = 1 iff boat i is used as a host boat, and
■jikt = 1 iff boat k is a guest of boat i in period t. (The rally organiser's boat
was constrained to be a host in all models.)

As mentioned in Section 1, the objective was to minimise the number of
hosts:

2i.e. the remaining capacity after accommodating the host crews themselves.

minimise ^ Si subject to:

Constraints CD. A boat can only be visited if it is a host boat.

likt — Si < 0 for all ?,k,t;i ^ k

Constraints CCAP. The capacity of a host boat cannot be exceeded.

Yl c^ikt < IÜ ~ ci for all-i,t

where c,- is the crew size of boat i and A', is its total capacity.
Constraints GA. Each guest crew must always have a host.

Y Hkt + 4 = 1 for dl\k,t
i,i^k

Constraints GB. A guest crew cannot visit a host boat more than once.

y^ jikt < 1 for all i,k;i ^ k
t

Constraints W. Any pair of guests can meet at most once.

likt + Hit + Ijks + Iju < 3 for all i,j, k, /, t, s;

i^j;i^k',k< I;i ^ I;

The constraints W, which have six indices, clearly lead to a huge number
of rows when the problem is modelled. The number of rows is 0(B4T2),
where B is the number of boats and T is the number of time periods. How-
ever, this model has a moderate number of variables, namely 0(B2T).

The size of the problem was reduced by taking account of the fact that
in any optimal solution there are some boats which will always be chosen to
be hosts because of their large capacity and small crew size. By the same
token, some boats would clearly never be chosen to be hosts: for example, the
three virtual boats with zero capacity. The data was ordered by decreasing
(total capacity — crew size) and parameters hostmin and hostmax were
introduced, such that the range of indices for potential hosts was restricted
to 1, .. , hostmax and the range of indices for potential guests was restricted
to hostmin+1, .. , 42.

The formulation was tested on a reduced problem with 15 boats and 4
time periods, and with hostmin = 4 and hostmax = 8. This resulted in a
model with 379 variables and 18,212 rows. The LP relaxation solved in 259
seconds using the XPRESSMP optimised on an IBM 486 DX PC, in 816
simplex iterations.

3XPRESS MP (Version 7). Dash Associates, Blisworth House, Blisworth, Northants
NN7 3BX, U.K.

4.2 Second Formulation

To reduce the number of constraints in the previous formulation, a further
set of zero-one variables was introduced:

Xikit = 1 iff crews k and / meet on boat i in time period t

and the constraints W were replaced by the three following sets S, V and Y.
S and V together define the x variables in terms of the 7 variables:
Constraints S.

2xikit - likt - Hit < 0 for all i, k,l,t;k < /;i ^ hi ^ I

Constraints V.

likt + lilt ~ Xikit < 1 for all i, k,I,t;k < l;i ^ k;i ^ /

and constraints Y then replace constraints W in the first formulation:
Constraints Y. Any pair of guest crews can meet at most once.

t l,l>k

The number of variables is now increased to 0(B3T), but the number of
rows is reduced, also to 0(B3T).

5 Experiments on A Reduced Problem

The second formulation was used in a variety of computational experiments
with the reduced 15-boat problem. As before, hostmin = 4 and hostmax
= 8. Firstly, the problem was solved directly (model PSl). This gave an
optimal solution with 5 hosts in a total time of 2214 sees. This was used as
a basis for comparison in several experiments.

First, a facility of the XPRESSMP package was used which enables cer-
tain constraints to be introduced only if a particular solution violates them.
This greatly reduces the initial size of a model. This facility is called MVUB
(Make Variable Upper Bounds) and applies only to constraints of the form
x — My < 0. The CD constraints were in this form already and the S
constraints could be disaggregated to get them into the proper form, giving:

Xikit - likt < 0 and xiku - im < 0

Normally disaggregation would result in a tighter LP relaxation, but since
in this case all the coefficients of Xiku in the other constraints of the model
are unity, it can be shown by Fourier-Motzkin elimination that this will not

6

be the case [6]. In the second version of the model (PSll) both the CD
and the S constraints were modelled using MVUB; in the third (PS12) the S
constraints were modelled explicitly and the CD constraints were modelled
using MVUB. The results are shown in Table 2; the total solution time for
PSl was less than for either of the new versions. Thus the MVUB feature
was not helpful in this case.

Model PSl PSll PS12
Rows 4386 2130 4022
Columns 2271 2271 2271
LP solution time (sees) 101 16 19
Number of iterations 1474 696 497
LP objective value 3.42 3.42 3.42
MVUB time (sees) n.a. 561 697
Branch-fc-Bound time (sees) 2113 1852 3789
Number of nodes 287 279 311
IP objective value 5.00 5.00 5.00

Table 2: Results with MVUB

Next, special ordered sets of type I were tried. A set of variables form
a special ordered set of type I if at most one of them can be nonzero. For
example, the 7 variables could be treated as special ordered sets: for each
value of i and k, at most one of the set {■jikt^t = l,-,6} can be nonzero.
This device is useful if there is some natural ordering on the variables, when
it can reduce the time spent doing branch-and-bound. However, in this case
there is no natural ordering, since the time periods are interchangeable: in
any solution, periods 1 and 6, say, can be swapped and the solution will still
be valid. This meant that the approach was not helpful and in fact made
branch-and-bound slower.

It would also be possible to tighten the LP relaxation by adding extra
"covering" constraints generated from the CCAP constraints. For example,
from the capacity constraint

7121 + 27131 + 47i41 + 37151 < 7

the following covering constraints could be derived:

7121 + 7141 < 1

7121 + 7i3i + 7i5i < 2

7i2i + 7i4i + 7i5i < 2

However, there would be a vast number of such constraints and so this
did not seem a particularly fruitful approach.

Another approach was to omit the S, V and Y constraints, solve the LP
relaxation of the resulting problem and then add in cuts of the form

«€Q i,jeQ

Q

for index sets Q, where | Q | is odd. By inspection, many of these were
violated by the fractional solution. However, automating the process of in-
specting the solution, identifying the appropriate index sets and then gener-
ating the corresponding cuts would have been computationally prohibitive.
Equally, there would be no advantage in generating all possible cuts (even
for sets of cardinality 3 only), as this would simply have resulted in another
enormous model.

To summarise, the experiments with the reduced problem did not indicate
a successful solution strategy for the full problem.

6 Experiments on The Full Problem

The size of the full model defeated all the available modellers, even using
indices restricted by hostmin and hostmax. Therefore, a heuristic approach
was adopted, based on the recognition that the total capacity of the first 13
boats (arranged, as described earlier, in decreasing order of spare capacity)
was sufficient to accommodate all the crews (there would be 4 spare places),
and that the largest guest crew could be accommodated on all but three of
the hosts. Hence if a solution with 13 hosts was possible, these 13 hosts
seemed a reasonable choice4.

A solution with 14 hosts was found, by relaxing the meeting constraints
and specifying that at least the first 14 boats, and at most the first 15, had
to be hosts. An integer solution was found in 598 sees. There were only
a few violations of the meeting constraints and, by manually adding in the
violated constraints, a feasible solution to the original problem was found.

It began to seem that this might be an optimal solution. Therefore the
first 13 boats were fixed as hosts and an attempt was made to prove that
this was infeasible. The indices of the guest boats in the meeting constraints
were restricted to 21 to 42 (simply because this gave the largest model that
XPRESSMP could handle). The model was still large by most standards:
19,470 constraints and 11,664 variables. It was run using a parallel implemen-
tation of OSL5 on seven RS/6000 computers at IBM UK Scientific Centre,

4As described in Section 3, it was later realised that the first 13 boats in order of
total capacity, Ki, would give a larger number of spare places after all the guests had
been accommodated. Nevertheless, the problem was in theory feasible, in terms of total
capacity, with the 13 selected hosts.

5Optimization Subroutine Library (OSL), IBM Corporation.

8

Hursley. The run was aborted after 189 hours, having failed to prove infea-
sibility. OSL had processed about 2,500 nodes, of which around 50% were
still active: 239 were infeasible. Some nodes were taking over two hours to
evaluate.

7 Constraint Programming Approach

This alternative approach was suggested by the desire to prove infeasibility
for the 13-host model, in the light of the failure of OSL. However, it turned
out that constraint programming was able to find a feasible solution very
rapidly, albeit with manual intervention. The work was carried out at the
University of Leeds.

The progressive party problem, with the 13 specified host boats, was
formulated as a constraint satisfaction problem (CSP) and implemented in
ILOG Solver [3], a constraint programming tool in the form of a C++ library.
Solver has a large number of pre-defined constraint classes and provides a
standard backtracking search method, the forward checking algorithm, for
solving CSPs. If necessary, new constraint classes and search algorithms
can be defined, but these facilities were not required in this case. The for-
ward checking algorithm repeatedly chooses an unassigned variable, chooses a
value for that variable from its current domain and makes a tentative assign-
ment. The constraints are then used to identify the effects of the assignment
on future (still unassigned) variables, and any value in the domain of a fu-
ture variable which conflicts with the current assignment (and the rest of the
current partial solution) is temporarily deleted. If at any stage the domain of
a future variable becomes empty, the algorithm backtracks and retracts the
last assignment. Solver also makes the problem arc consistent at the outset,
and maintains arc consistency in the subproblems consisting of the future
variables and their remaining domains, as forward checking proceeds.

7.1 CSP Formulation

The first advantage of the constraint programming approach was that the
formulation as a CSP was much more compact than had been previously
possible. Since the task in this case was to show (if possible) that the problem
with 13 specific host boats was infeasible, host and guest boats were treated
separately in the formulation. Suppose that there are G guest boats, H host
boats and T time periods.

The principal variables, /it<, represent the host boat that guest boat i
visits at time t; the domain of each hu is the set {1,.., //}, and there are GT
such variables. The constraints that every guest boat must always have a
host and that in any time period a guest boat can only be assigned to one

host are automatically satisfied by any solution to the CSP, which must have
exactly one value assigned to each ha, i.e. exactly one host assigned to each
guest boat in each time period.

The constraints that no guest boat can visit a host boat more than once
are expressed in the CSP by:

/i,i, h{2, /iz'3, ••, hiT are all different for all i

For each z, this gives a single Solver constraint, equivalent to T(T — l)/2
binary not-equals constraints, i.e. /itl ^ h{2, etc.

The capacity constraints are dealt with, as in the LP, by introducing
new constrained 0-1 variables, corresponding to the 7 variables of the LP
formulation: v,jt — 1 iff guest boat «visits host j at time t. The relationships
between these variables and the ha variables are specified by GET Boolean
constraints:

Vijt = 1 iff ha = j for all i,j,t

and as in the LP, the capacity constraints are then:

^ CiVijt < Cj for all j, t
i

where c,- is the crew size of guest boat i and Cj is the spare capacity of host
boat j, after accommodating its own crew.

The constraints that no pair of crews can meet twice also require the
introduction of a new set of 0-1 variables: muit = 1 iff crews k and / meet at
time t. The constraints linking the new variables to the original h variables
are:

if hkt = hu then rrikit = 1 for all k,l,t;k < I

and the meeting constraints are expressed by:

y^rrikit < 1 for all k,l;k < I
t

Because the m variables have only three subscripts, rather than four as
in the equivalent (x) variables in the LP, the CSP has only 0(B2T) variables
and 0(B2T) constraints.

7.2 Symmetry Constraints

The constraints just described are sufficient to define the problem: a num-
ber of additional constraints were introduced to reduce the symmetries in

10

the problem, as much as possible. For any solution, there are many equiva-
lent solutions, which have, for instance, two guest boats with the same size
crew interchanged throughout. Such symmetries in the problem can vastly
increase the size of the search space and so the amount of work that has to
be done. If there are no solutions, searching through many equivalent par-
tial solutions can be extremely time-consuming. Symmetry can be avoided,
or at least reduced, by adding constraints to eliminate equivalent solutions.
(Puget [2] discusses this approach to avoiding symmetry.)

First, an ordering was imposed on the time-periods, which are otherwise
interchangeable: the first guest boat must visit the host boats in order. (As
described in the next section, the first guest boat was the one with the largest
crew.)

The second set of constraints distinguishes between guest boats with the
same size crew: if i, j are such a pair, with i < j, then for the first time
period, we impose the constraint:

hu < hji

To allow for the fact that both boats may visit the same host at time 1 (i.e,
h-n — hji), but if so, they must visit different boats at time 2:

either hn < hj\ or /i,2 < hj2

Finally, constraints were added to distinguish (to an extent) between host
boats with the same spare capacity: if j and k are two such host boats, with
j < k, the first guest boat cannot visit host k unless it also visits host j.

7.3 Solving the Problem

It is next necessary to choose variable and value ordering heuristics, i.e. rules
for deciding which variable to consider next and which value to assign to
it. Although the formulation just described has a great many variables, as-
signing values to the hu variables is sufficient to arrive at a solution, and in
devising variable and value ordering heuristics only these principal variables
need be considered. Good variable ordering heuristics, in particular, are often
crucial to the success of constraint programming methods. A heuristic which
is commonly used is based on the "fail-first" principle, that is, choose the
variable which is likely to be hardest to assign. In the forward checking algo-
rithm, this means choosing the variable with the smallest remaining domain;
ties may be broken by choosing the variable involved in most constraints.
Finally, variables are considered in the order in which they are defined; to
give priority to the largest crews, the guest crews, and so the corresponding
ha variables, were arranged in descending order of size.

11

In ordering the values, a general principle is to choose first those values
which seem most likely to succeed, and the host boats accordingly were
considered in descending order of spare capacity.

The problem formulation was first tested on smaller problems than the full
13 hosts, 29 guests, 6 time periods problem. Several smaller problems were
solved very quickly (in 1 or 2 seconds on a SPARCstation IPX), with little
backtracking, and the program was shown to be producing correct solutions.
However, the full size problem ran for hours without producing any result.

It was then decided to assign all the variables relating to one time period
before going on to the next. Hence, each time period was solved separately
but the solutions for each time period constrained future solutions. In effect
this was another variable ordering heuristic, taking priority over the others
however, the program was not able to backtrack to earlier time periods. The
plan was to find a solution for as many time periods as could be solved within
a short time, and then to print out the domains of the remaining variables.
It was hoped that this would give some clue as to why the program could
not proceed. With this modification, the program found a solution for five
time periods very quickly (which it had not previously been able to do). At
this point, the domain of any variable corresponding to the 6th time period
contains those hosts that the corresponding boat can visit and has not already
visited. An attempt was made to fit the guest crews into those host boats
which they could still visit, by hand, in order to see why it could not be
done. However, a solution was found which appeared to be feasible; adding
some of the assignments to the program as extra constraints confirmed that
a solution based on these assignments did obey all the constraints.

Hence, the 13 hosts, 29 guests, 6 time periods problem, which had been
thought to be insoluble, had been solved, though with some manual assis-
tance. An optimal solution to the original problem had therefore been found.

Subsequently, the extra constraints on the 6th time period were removed,
and the program allowed to search for a solution without this intervention;
it found a solution in 27 minutes, and went on to find a solution for the 7th
time period in another minute, so that the party could have lasted for longer
without requiring more hosts!

8 Discussion

For this particular problem, constraint programming succeeded spectacu-
larly in finding a solution very quickly where linear programming had failed
to find a solution at all. Moreover, on those problems which linear program-
ming succeeded in solving, constraint programming found solutions much
more quickly. A number of reasons to account for the success of constraint
programming in this case can be identified.

12

8.1 Compactness of representation

The fundamental difficulty with linear programming appears to lie in find-
ing a compact representation of the problem. The formulations described
earlier show that constraint programming requires far fewer constraints and
variables to represent the problem. This is possible because of the greater ex-
pressive power of the constraints allowed in constraint, satisfaction problems,
which are not restricted to linear inequalities as in linear programming. In
turn, the greater expressiveness is allowed by the fact that constraint satis-
faction algorithms make relatively unsophisticated (although very effective)
use of the constraints, compared with the simplex algorithm, for instance: in
constraint programming, it is only necessary to be able to detect whether a
particular set of assignments satisfies a given constraint or not.

Furthermore, although the total number of variables and constraints is
important in constraint programming, it commonly happens, as here, that
in modelling a complex combinatorial problem as a CSP, there is a set of
principal variables together with subsidiary variables which are introduced
for the purpose of modelling the constraints. Typically, the forward checking
algorithm is applied only to the principal variables of the problem. As already
mentioned, in this case the solution is found by assigning values to the ha
variables in turn, i.e. by assigning a host to each guest boat i for each time
t. The subsidiary variables are automatically instantiated in this process,
because of the constraints linking them to the principal variables, and they
are used in effect as vehicles for propagating the problem constraints to the
domains of other principal variables. Hence, the effective complexity of the
problem is less than the total number of constraints and variables suggests.
It is still, however, a large problem, having 29 x 6 variables, each with 13
possible values, giving 1329x6 possible assignments.

8.2 Constraint propagation

The constraints in the progressive party problem are such that, in constraint
programming, the effect of any assignment of a value to a variable can usually
be propagated immediately to the domains of related variables. For instance,
as soon as an assignment is made to an hn variable, i.e. a host is assigned to
guest crew i at time t, the same value can be removed from the domain of any
variable corresponding to a crew that has already met crew i. The capacity
constraints are the only ones that may not immediately prune the domains
of other principal variables. However, given the capacities and crew sizes, the
maximum number of guest crews that can visit a host simultaneously is 5,
and in practice the number is almost always 3 or less. An assignment to an
ha variable will, therefore, very often result in the capacity constraints being
used to prune other domains. Since the capacity constraints are binding, it is

13

important that infeasible assignments should be detected as early as possible
in this way. In other problems, by contrast, constraints on resources may only
have any pruning effect once most of the variables involved in the constraint
have been instantiated; this can lead to a large amount of searching before a
set of assignments satisfying the constraint is found.

8.3 Solution Strategy

The attempts detailed in section 5 to find a good solution strategy using ILP
are based on the mathematical properties of the model and not on the original
problem. When it succeeds, this is, of course, one of the strengths of linear
programming: the methods that have been developed are independent of the
specific problem being addressed. However, in this case, where the attempts
failed, it seems a disadvantage that the important features of the original
problem cannot be used to direct the search for a solution. Indeed, the ILP
model makes it difficult to see that the problem is essentially one of assigning
a host boat to each guest boat in each time period: the majority of the
variables are x variables, introduced solely to model the meeting constraints,
and the fact that each guest boat must be assigned to exactly one host boat
at any time is expressed only implicitly in the constraints.

In the CSP formulation, on the other hand, it is easy to see the essentials
of the problem, because the principal variables represent precisely the as-
signment of a host boat to each guest boat in each time period. This allows
a solution strategy to be devised around reasoning about these assignments.
Although this approach may seem very problem specific, it requires only that
variable and value ordering strategies be defined, and often, as here, general
principles apply; choose next the variable which is likely to be hardest to as-
sign, and choose a value for it which is likely to succeed. Solving the problem
separately for each time period is admittedly a more problem-specific heuris-
tic, but it is an example of an approach worth trying when a problem can be
naturally divided into subproblems, and very quick and easy to implement.

8.4 Proof of optimality

Finally, it is easy to show that a solution with 12 hosts is impossible, from
the fact that the capacity constraints cannot be met even for a single time
period; hence, when a solution with 13 hosts was found, it was known to be
optimal. In other situations, proving optimality can be much more difficult.

8.5 The Role of Heuristics

All these factors, together with a degree of good luck in the choice of heuris-
tics, combined to make what was a very difficult problem for linear pro-

14

gramming, a tractable one for constraint programming. Even so, the size
of the problem meant that it was still potentially too difficult for constraint
programming to solve if a great deal of search was required.

The role of heuristics in finding a solution is clearly crucial; for instance,
the program was unable to find a solution with 13 hosts when all the time
periods were considered together. Considering each time period in turn, as it
was implemented in this case, has obvious limitations; because backtracking
to earlier time periods is not allowed, this strategy is not guaranteed to find
a solution if there is one. and it cannot show that a problem is infeasible.
In general, it may be necessary to experiment with different combinations of
heuristics on a given problem instance in order to get a good solution. Even
then, it may be difficult to find a solution: a modification of the original
problem, to make the individual crew sizes much more equal while keeping
the total size the same, has proved much more difficult (even for one time
period, where a solution can easily be found manually).

Ironically, it seems very probable that if the 13-host problem had indeed
been infeasible, as originally supposed, the constraint programming approach
would not have been able to prove infeasibility: although it is easy to show
that a solution with 12 hosts is impossible, because the capacity constraints
cannot be met even for a single time period, a problem which is 'only just'
infeasible, because the meeting and capacity constraints cannot be simul-
taneously satisfied for the required number of time periods, would require a
complete search of a very large search space, and would be extremely difficult
to prove infeasible.

9 Related Work

Papers which also compare integer linear programming and constraint pro-
gramming applied to particular problems are [1, 5]. Van Hentenryck and
Carillon [5] describe a warehouse location problem, and suggest that the ILP
model, because it has a great many variables relating to the allocation of
customers to warehouses, disguises the fact that the essence of the problem
is to decide which of the possible warehouse locations should be chosen. The
constraint programming approach, on the other hand, is based on reasoning
about the warehouses. This is similar in some respects to the progressive
party problem, which also has a large number of additional ILP variables to
model the meeting constraints, as described in section 8.3. However, in the
warehouse location problem, the ILP and CSP models have an identical set
of 0-1 variables representing whether each warehouse is to be used or not, so
that the difficulty in the ILP is that the main variables are swamped by other
variables. In the progressive party problem, an additional difficulty is that
the ILP, unlike the CSP, has no variables representing directly the allocation

15

of a host boat to each guest boat in each time period.
The paper by Dincbas, Simonis and van Hentenryck [1] discusses a case in

which the expressive power of the constraints in constraint programming al-
lows a radical reformulation of the obvious ILP model, giving a much smaller
problem. A formulation with n variables, each with m values, and constraints
which are linear inequalities, is expressed instead in terms of m variables each
with n values, and more complex constraints. This changes the number of
possible assignments of values to variables from m.n to nm. Since the number
of possible assignments indicates the total size of the search space, this is
an advantage if m is much smaller than n. For instance, in [1], a CSP with
complexity 4'2 is reformulated to give a problem with complexity 724.

However, this is not the reason for the success of constraint programming
in the progressive party problem: in that case, the CP formulation still has a
relatively small number of values compared with the number of variables, and
the number of possible assignments is 1329x6. In theory, therefore, we should
consider reversing the formulation in some way, making the host boats the
variables. However, in this case reformulation is not a sensible option. One
complication is the time dimension: the variables would have to correspond
to each host boat in each time period, giving 13 x 6 variables in all. The
values would then be the possible combinations of guest boats which could
be assigned to each variable, and there are a great many such combinations;
the constraints would also be very difficult to express. So although reversing
the formulation can be extremely valuable in some cases, reducing a large
problem to a smaller problem which can be solved much more quickly, it is
not possible in this case.

A recent paper by Puget and De Backer [4] compares integer linear pro-
gramming and constraint programming in general. They conclude that a
crucial factor is the degree of propagation that the constraints of a problem
allow: if each assignment of a value to a variable can be expected to trigger
the pruning of many values from the domains of other variables, so that large
parts of the search space do not have to be explored, constraint programming
can be expected to be successful. As discussed in section 8.2, the constraints
in the progressive party problem are very effective in propagating the effects
of assignments to other variables. In other cases, for instance, where the
constraints involve large numbers of variables, constraint propagation may
be much less useful, and if the problem can be naturally represented by linear
constraints, integer linear programming may be more efficient.

10 Conclusions

Although the progressive party problem may not be a practical problem,
except for members of yacht clubs, it has many of the classical features of

16

combinatorial optimization problems, and was expected to be amenable to
linear programming techniques. However, as we have shown, the resulting
models were too large to be solved, whereas constraint programming found
an optimal solution very quickly.

The success of constraint programming in solving this problem is due to
a combination of factors, discussed in section 8. Some of these reasons have
been identified in other studies of problems where constraint programming
out-performed ILP, as discussed in section 9. However, unlike the previous
studies, in this problem both models turned out to be extremely large; ILP
failed because the model was too large to be solved, but also, it would not
have been possible to explore the complete search space arising from the
constraint programming formulation. In practice, many real problems are
too large to be able to guarantee to find a solution; this paper shows that even
so, constraint programming can succeed through careful choice of heuristics
to direct its search.

Our experience with this problem suggests that constraint programming
may do better than integer linear programming when the following factors
are present:

• The problem cannot easily be expressed in terms of linear constraints:
constraint programming will then give a more compact representation.

• The constraints allow the early propagation of the effects of assignments
to the domains of other variables. This happens if each constraint
involves only a small number of variables, but also sometimes with
global constraints, as in this case: the capacity constraints are triggered
after only a small number of guest boats have been assigned to the same
host at the same time.

It is easy to devise good solution strategies for the problem and hence
take advantage of the fact that the constraint programming formulation
represents the problem much more directly that the ILP formulation
typically does.

A tight bound on the value of the objective in an optimal solution is
available, so that if an optimal solution is found, it can be recognised
as such (unless, of course, the problem is sufficiently small to be able
to prove optimality by doing a complete search).

Further comparisons between the two approaches are still needed to quan-
tify some of these factors and to give a clearer idea of when constraint pro-
gramming should be chosen in preference to integer linear programming.

•

•

17

Acknowledgement

We are very grateful to William Ricketts of IBM UK Scientific Centre, Hurs-
ley Park, Winchester, for his enthusiastic help with the computational ex-
periments on the large LP model.

References

[1] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving a Cutting-Stock
problem in constraint logic programming. In R. Kowalski and K. Brown,
editors, Logic Programming, pages 42-58. 1988.

[2] J.-F. Puget. On the Satisfiability of Symmetrical Constrained Satisfaction
Problems. In Proceedings of ISMIS'93, 1993.

[3] J.-F. Puget. A C++ Implementation of CLP. In Proceedings of SPICIS94
(Singapore International Conference on Intelligent Systems), 1994.

[4] J.-F. Puget and B. De Backer. Comparing Constraint Programming and
MILP. Submitted to the 1st International Joint Workshop on Artificial
Intelligence and Operations Research, June 1995.

[5] P. van Hentenryck and J.-P. Carillon. Generality versus Specificity: an
Experience with AI and OR techniques. In Proceedings of AAAI-88,
volume 2, pages 660-664, 1988.

[6] H. P. Williams. The elimination of integer variables. JORS, 43:387-393,
1992.

18

The TSP Phase Transition

Ian P. Gent Toby Walsh
Department of Computer Science Mechanized Reasoning Group

University of Strathclyde IRST, Trento &
Glasgow Gl 1XH DIST, University of Genoa,
United Kingdom Italy

ipg@cs.strath.ac.uk toby@irst.it

In the first instance, please address correspondence to Toby Walsh at IRST,
Location Pante di Povo, 138100 Trento, Italy.

Abstract

We wish to bring to the attention of the OR community the phenomenon of phase
transitions in randomly generated problems. These are of considerable practical
use for benchmarking algorithms. They also offer insight into problem hardness
and algorithm performance. Whilst phase transition experiments are frequently
performed by AI researchers, such experiments do not appear to be in common
use in the OR community. To illustrate the value of such experiments, we examine
a typical OR problem, the traveling salesman problem. We report in detail many
features of the phase transition in this problem, and show how some of these
features are also seen in real problems.

Acknowledgements

The second author is supported by a HCM Postdoctoral Fellowship. We thank
Iain Buchanan for comments on a draft of this paper, and Alan Bundy, and the
members of the Mathematical Reasoning Group in Edinburgh for their construct-
ive comments and many CPU cycles donated to these and other experiments from
SERC grant GR/H/23610. We also thank the MRG group at Trento and the
Department of Computer Science at the University of Strathclyde for additional
CPU cycles. Finally, we thank Robert Craig for providing us with his code.

1 Introduction

A perennial problem for those wishing to study algorithms is a fair means of
comparison. The set of benchmark problems is often comparatively small, and
it is hard to be sure that good performance is not the result of luck. Formal
theorems on performance are solid, but are often hard to come by and may not
be relevant to practical problems. Algorithms can. of course, be tested on random
problems, but there is justifiable suspicion of such results, as random problems are
not meaningful in themselves. We wish to draw the attention of the OR community
to the phenomenon of "phase transitions"' in randomly generated problems. This
phenomenon allows us to generate random problems which are typically hard,
and therefore provide a fair basis for comparison of different algorithms. They
can also provide a basis for furthering our understanding of the way algorithms
behave on both random and real problems. We hope therefore to contribute to
the developing "empirical science of algorithms" [10].

Phase transitions have received considerable attention in the AI community
[2, 13, 7]. Whilst random problems are typically easy to solve, hard random
problems can be found at a phase transition [2]. AI researchers now routinely use
such problems to benchmark satisfiability and constraint satisfaction algorithms.
Simple scaling laws are often associated with these phase transitions. For example,
scaling laws have been observed both for properties of random problems like the
probability of having a solution [12, 7], and for properties of algorithms like the
fitness of solutions during hill-climbing [3]. Such scaling laws are likely to prove
useful in theoretical analyses of problem hardness and algorithm performance.

In this paper, we show how phase transition phenomena are of practical use in
studying a typical OR problem, the traveling salesman problem (TSP). We start
by showing that, contrary to earlier reports, there is a very clearly marked phase
transition in TSP. We observe an "easy-hard-easy" pattern in median problem
difficulty, the hard region being correlated with a change from soluble to insoluble
problems. We then show empirically that a simple scaling law holds of this phase
transition. We next investigate the occurrence of rare exceptionally hard prob-
lems, which can be orders of magnitude harder than those found directly at the
solubility phase transition. We show that their hardness is due to early mistakes
in backtracking search. Finally, we show that we can study phase transitions in
real problems, and that many of the features observed in random problems occur
in real problems too.

2 Computational Phase Transitions

Randomly generated problems usually have a natural order parameter. For ex-
ample, for randomly generated graph colouring problems, the order parameter is
the average connectivity of the graph. A rapid phase transition from colourable
to uncolourable occurs at a fixed value of this order parameter. Surprisingly this

value is almost completely independent of the size of the graph. Computational
hardness appears to be associated with this phase transition [2]. In the colourable
region, graphs have low connectivity. As almost any assignment of colours to nodes
is a proper colouring, such graphs are usually easy to colour. In the uncolourable
region, graphs have high connectivity. As many nodes are connected together, it is
usually easy to show that there is an insufficient number of colours with which to
colour the graph. By comparison, problems from the phase transition are typically
hard since they are neither easily colourable nor obviously uncolourable.

Similar phase transition behaviour has been observed with many different ran-
domly generated NP-complete problems using a variety of different complete and
incomplete algorithms: for example, it has been seen in randomly generated sat-
isfiability problems [2, 13], independent set problems [6], Hamiltonian circuits [2],
and constraint satisfaction problems [14]. Phase transition phenomena have also
been observed in real computational data like exam time-tabling [4]. Given this
large spectrum of problem types and algorithms, computational hardness in AI
is now often associated with the occurrence of a phase transition. The aim of
this paper is to demonstrate the existence of such phase transition behaviour in a
typical OR problem.

3 Random TSP problems

Given n cities, a tour length I and a matrix that defines the distance between each
pair of cities, the traveling salesman decision problem (the TSP decision problem)
is to determine if a tour of length / or less exists which visits all n cities. The TSP
decision problem is one of the most famous NP-complete problems. Randomly
generated TSP problems can be easily constructed by placing cities on a square of
area A at random.

To solve the TSP decision problem, we first use an implementation of the branch
and bound algorithm written by Robert Craig at AT&T Bell Labs. This uses the
Hungarian algorithm for branching, minimally adapted by us to solve the decision
rather than minization problem. Branch and bound is one of the best complete
algorithms for the TSP decision problem.

For random TSP problems with n cities uniformly distributed over a rectangular
area A, the expected optimal tour length [1] is,

lopt = k.VrüÄ (1)

where k & 0.75. This, would suggest that a natural order parameter for the TSP
decision problem is l/Vn.A. Irrespective of the actual values for /, n and A, we
expect a phase transition to occur in the probability of a tour existing for a value
of the order parameter of about 0.75.

In Figure 1, we plot one view of the phase transition as we vary this order
parameter. The number of randomly generated cities is fixed at 24 and the square
side is fixed at 1000 units. We vary the tour length required, using the same

1000 sets of 24 random cities at each point. We plot results by means of contours
of percentiles, where for example the 50% contour is the median, and the 99%
contour represents behaviour that was only exceeded by 1% of problems (in this
case 10 problems). We also include the best and worst case. As search cost varies
over many orders of magnitude, we plot the log of the number of nodes searched.
All logs in this paper are to base 10.

log nodes searched

0.25 0.5 0.75 1.0

Prob(tour exists)

:'- 1

:...0.g

:... 0.6

j... 0.4

L. 0.2

L. 0

1/2
l/(nA)

log nodes searched
p

7 _

6 .

5 .

4 .

warn

hcst

3 . f
2 .

1
7 Ä \A

n
I I ' -I— -'■I'"' 1 1 »-

p(tour exists)

1

.0.8

0.25 0.5 0.75 1.0 1.25 1.5

.0.6

.0.4

.0.2

ll(nA)

Fig 1: Varying tour length Fig 2: Varying number of cities

As with graph colouring, there is a rapid phase transition from soluble to
insoluble as we vary the order parameter. The phase transition occurs, as expected
from Equation 1, in the region around l/y/n.A fa 0.75. In the soluble region,
problems are under-constrained and typically easy. As many tours are less than
the required length, it is not difficult to find a tour that is short enough. In the
insoluble region, problems are over-constrained and again typically easy. As the
required tour length is a very tight bound, many tours are too long and are quickly
ruled out. In the phase transition inbetween, problems are "critically constrained"
and typically hard. In this region, it is difficult to determine if a tour of the
required length exists without exhaustive search. This pattern of "easy-hard-
easy" behaviour in the median contour is familiar from AI research into phase
transitions [13]. Figure 1 clearly refutes the claim of Kirkpatrick and Selman [12]
that "there are other NP-complete problems (for example, the traveling salesman
problem or max-clique) that lack a clear phase boundary at which 'hard problems'
cluster".

Note that whilst median problem difficulty peaks in the middle of phase trans-
ition, occasional very hard problems occur in under-constrained regions where
almost all problems are soluble. The worst such problem took 4,412,760 nodes in
a region where 97.7% of problems (including this one) have a tour. This is four
orders of magnitude worse than the worst median problem, which took just 449
nodes in a region where 61.2% of problems have ä tour. Such behaviour has previ-
ously been observed both for random graph-colouring and satisfiability problems
[9, 5]. We return to such occasional hard problems in satisfiable regions in §5 and

§6.
We observe a similar phase transition when we fix the tour length and vary the

number of cities visited. In Figure 2, we set l/\/Ä to §.\/2~5 and vary the number of
cities visited from 5 to 40 in steps of 1, testing 1000 sets of cities at each point. As
expected from Equation 1, the phase transition occurs broadly around the region
l/y/n.A ~ 0.75. Median behaviour displayed the usual easy-hard-easy pattern
through the phase transition. Compared to Figure 1, the worst case plot shows
worse behaviour at small values of the order parameter, in the mostly insoluble
region. Exceptionally hard problems in the mostly soluble region do not seem to
occur. However, we note that as the order parameter varies, so does the number
of cities. Problems in the soluble region have smaller numbers of cities and so are
much easier. The worst case is bounded by a search envelope of size 0(n\) which
is constant in Figure 1 but decreasing to the right in Figure 2. The total number
of nodes searched is thus not a direct measure of relative problem hardness.

4 Scaling of Phase Transition

To utilise phase transition phenomena effectively, we need to determine how they
scale with problem size. For instance, to test heuristic procedures like simulated
annealing on random TSP problems which are larger than can be solved using
complete procedures, we need a good estimate of the scaling of the probability that
a random TSP problem has a tour. Analogies with phase transitions in physical
systems are often useful in discovering such scaling results.

One of the most unusual and theoretically interesting phase transitions in phys-
ics occurs in spin glasses. Kirkpatrick et al. [11] have used an analogy with this
phase transition to suggest a simple scaling result for the probability of satisfiab-
ility for a common class of randomly generated satisfiability problems. In [7], we
demonstrated that this simple scaling result applied to a wide range of different
classes of randomly generated satisfiability problems. Properties of algorithms like
the number of constraint propagations performed on each branch of the search tree
also appear to obey similar scaling results [8].

In a spin glass, each atom has a magnetic spin which can have only one of two
values, "up" or "down" (1 or -1). The system therefore has a exponentially large
number of possible configurations. Interactions between atoms are both ferromag-
netic (promoting alignment of spins) and anti-ferromagnetic (promoting opposite
spins). As a result, a spin glass is a "frustrated" system with a large number of
near optimal equilibrium configurations which cannot be locally improved by flip-
ping a spin. It is difficult therefore to get the spin glass into a state of least energy.
An analogy can be made with TSP problems. A TSP problem has an exponentially
large number of possible tours. It is also usually a frustrated system, having a
large number of near optimal tours which cannot be locally improved (eg. using
local changes like 2-opt or 3-opt). It is very difficult therefore to find an optimal
tour. This analogy with spin glasses suggests that a macroscopic property like the

probability of a tour existing obeys the following simple scaling law,

Prob(tour exists) = /((
/

y/n.A
a).n1/v) (2)

where / is some fundamental function, and a and v are constants.
To test this hypothesis, we generated random TSP problems with n = 9, 16,

25, and 36, and measured the probability that a tour exists as we traverse the
phase transition. In Figure 3, each probability curve is plotted against /. The
solid line represents n = 36. As n increases, the phase transition occurs at larger
/ but over a smaller range. By rescaling the x-axis for each problem size, we can
quickly test (2). In line with (1), we set a = 0.75. We varied vr and observed the
best fit to (2) at v = 2. Figure 4 shows the data from Figure 3 rescaled so that
the probability of a tour existing of length / for a random n-city tour is plotted
at the x-ordinate (TT=T — 0.75). n1^2. Equation (2) is obeyed if all the probability

curves coincide. Figure 4 shows that the data fits (2) very well indeed. Note that
(1) is only an asymptotic limit. Using Figure 4, we can for the first time predict
the probability of a tour of a given length existing for all values of /, n, and A.

Prob(tour exists)
1 i

--9, 16. 25, 36
r f r

-c~— i 1 1 1 r
0 1500 3000 4500 6000 7500 9000

tour length

Fig 3: Prob(tour) as n varies

Prob(tour exists)
1

0.8

0.6

0.5

0.4

0.2

0

-4 -3 -2 -I 0 12 3 4
x

Fig 4: Rescaled data (see text)

Our results very strongly suggest that the probability of a tour existing obeys
(2) with the parameters a ~ 0.75, v«2. So far, we have computed values for
/ by experimentation. Finding a closed form for / remains an interesting open
problem.

5 Optimal tours

The phase transition in Figure 1 results from a mixture of behaviours on soluble
and insoluble problems. To isolate the different behaviour, we found the optimal
tour for the first 100 sets of cities tested in Figure 1. We could then set the tour
length required to be a known distance, d from the optimal tour for each problem.

6

At d = 0 only optimal tours will be found whilst at d = — 1 no tours will be found
at all. By design, the phase transition thus occurs abruptly between d = — 1
and 0 (indicated by the dashed line). This gives a clear picture of how problem
difficulty is related to the distance from the individual transition in solubility. In
Figure 5, we vary d, the distance from the optimal tour from —1000 (insoluble)
to +1000 (soluble) in steps of 50, and for finer detail from —50 to +50 in steps of
5. In addition, we plot the cost at —1. For each distance d. we tested 100 sets of
capitals, with / = lopt + d.

Figure 5 demonstrates two different types of behaviour. In the insoluble region,
there is exponential growth as the phase boundary is approached. In the soluble
region, problems typically become harder as we approach the phase boundary since
we can accept increasingly fewer sub-optimal tours. However, some of the hardest
soluble problems have regions where search increases exponentially as we move
away from the phase boundary. With these problems, poor branching decisions
early on result in an exhaustive (and unsuccessful search) for a tour of given length".
Naively, accepting longer tours should make soluble problems easier, but Figure 5
clearly shows that the opposite can happen.

As an example, the worst case behaviour of 5,011,786 branches occurs at lopt +
750. well away from the phase transition, in a region where over 90% of the
problems are trivial. This worst case behaviour is a result of poor initial branching
decisions followed by an inability of branch and bound to cut off search until a
very late stage. In this case, the sixth branching decision made by the Hungarian
heuristic was to go from city 1 to city 14, thereby missing out an essential side-
trip between the two. In addition, the bound did not cut off search in this blind
alley until only two branching decisions were left. At the optimal tour length,
by comparison, the very tight bound enables backtracking to be initiated much
earlier.-The correct tour is thus found in just 22,129 branches. Sudden drops in
difficulty in the worst case contour follow the appearance of new and significantly
longer sub-optimal tours.

Problems such as the worst case in Figure 5 are often called "exceptionally
hard problems". They are of great interest as they appear away from the phase
transition in satisfiable regions where almost all problems are very easy [9, 5]. Poor
early branching choices followed by the inability to cut off search early has also
been proposed as the source of exceptionally hard problems in both satisfiability
[5, 8] and constraint satisfaction [16]. It remains an open question whether this
behaviour is seen with all algorithms or is restricted to those like back-tracking
which commit to early decisions. These results demonstrate that, contrary to
conventional wisdom, the hardest problems can be soluble.

6 Real TSP problems

Random problems may, of course, not be representative of the problems met in
practice. For example, they may lack features that can make real problems very

hard. With time-tabling problems, we discovered that problem difficulty can be
strongly influenced by the presence of large exam cliques [4]. There large scale
structures were rare in our randomly generated time-tabling problems but present
in our real data. Such large scale structures can make problems hard even well
away from the phase transition. Phase transitions in randomly generated data
should therefore be compared with phase transitions in real data.

As an example, we take some standard benchmark data from TSPLIB [15], the
capitals of the 48 contiguous states of the U.S.A. To compute the order parameter
for this data, we take A to be 7,825,118 km2, the area of the 48 contiguous states.
In Figure 6, we plot one view of a phase transition in this real data as we vary
this order parameter, again using the branch and bound algorithm. We fix the
number of capitals n at 24 and vary the tour length / from 500km to 15,000km in
steps of 500km. We used the same 1000 sets of 24 capitals at each point. A rapid
phase transition can be seen in Figure 6 at around / « 8000km and l/Vn.A ~ 0.6.
The worst case needed 2,933,071,577 nodes for a tour of length 8500km or less, in
a region where 99.6% of the problems have a tour, and more than 1446km longer
than the optimal tour for this problem. This is over five orders of magnitude worse
than the worst median of 5,096 nodes at tour length 7500km, where 31.1% of tours
were possible and worst case behaviour was 232,077,515 nodes. A similar phase
transition occurs when the tour length is fixed and the number of capitals visited
is varied [4].

log nodes searched
soluble region t< log nodes searched

7

6

5

worst 4

1
98<k

5«»
2

best 1

0

-0.2 -0.1 0 0.1 0.2 u

d / (nA)

Fig 5: 10pt + d for random problems

Prob(tour exists)

•— 1

l/(nA)

Fig 6: Varying tour length for real problems

The phase transition for real data is very similar to that seen with random data.
Median problem difficulty again follows an easy-hard-easy pattern through the
phase transition, whilst exceptionally hard problems occur in an under-constrained
region where nearly 100% of problems are soluble. The major difference between
real and random data is that real TSP decision problems are significantly harder
than random ones. In [4], we conjecture that this may be because of the different
distribution of cities in randomly generated problems compared to the real data.
Exceptionally hard problems in satisfiable regions appear for similar reasons to

8

random data: an early incorrect branching decision followed by the bound not
cutting off search until very deep in the search tree.

7 Conclusions

Phase transition phenomena have been of considerable practical value in AI but
have yet to receive much attention in OR. In this paper we have shown that
for complete procedures like branch and bound applied to the traveling salesman
problem, median problem difficulty typically follows an easy-hard-easy pattern
through the phase transition. Exceptionally hard problems can, however, occur
in under-constrained regions where nearly 100% of problems are soluble.

We have shown that phase transitions can be seen with both real and ran-
dom data. Real data is, however, often significantly harder than random data.
Phase transitions in real data are thus a very good source of hard problems for
benchmarking algorithms. In addition to locating the really hard problems, phase
transition phenomena obey some fascinating scaling laws, and we have empirically
demonstrated one such law in this paper. Such scaling results promise to improve
our understanding of both problem hardness and algorithm performance. As a
consequence, phase transition experiments have an important role to play in both
AI and OR.

References

[1] J. Beardwood, J.H. Halton, and J.M. Hammersley. The shortest path through
many points. Proceedings of the Cambridge Philosophical Society, 55:299-327,
1959.

[2] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard prob-
lems are. In Proceedings of the 12th IJCAI, pages 331-337. International Joint
Conference on Artificial Intelligence, 1991.

[3] Ian P. Gent and Toby Walsh. An empirical analysis of search in GSAT.
Journal of Artificial Intelligence Research, 1:47-59, September 1993.

[4] Ian P. Gent and Toby Walsh. Computational phase transitions in real prob-
lems. Research Paper 724, Dept. of Artificial Intelligence, Edinburgh, 1994.
Submitted to IJCAI-95.

[5] Ian P. Gent and Toby Walsh. Easy problems are sometimes hard. Artificial
Intelligence, 70:335-345, 1994.

[6] Ian P. Gent and Toby Walsh. The hardest random SAT problems. In Bernhard
Nebel and Leonie Dreschler-Fischer, editors, KI-94'- Advances in Artificial
Intelligence. 18th German Annual Conference on Artificial Intelligence, pages
355-366. Springer-Verlag, 1994.

[7] Ian P. Gent and Toby Walsh. The SAT phase transition. In Proceedings of
ECAI-94, pages 105-109, 1994.

[8] Ian P. Gent and Toby Walsh. The satisfiability constraint gap. Research
Paper 702, Dept. of Artificial Intelligence, Edinburgh, June 1994. Revised
version to appear in Artificial Intelligence special issue on phase transitions
in problem spaces.

[9] T. Hogg and C. Williams. The hardest constraint problems: A double phase
transition. Artificial Intelligence, 69:359-377, 1994.

10] J. N. Hooker. Needed: An empirical science of algorithms. Operations Re-
search, 42:201-212, 1994.

11] S. Kirkpatrick, G. Györgyi, N. Tishby, and L. Troyansky. The statistical
mechanics of k-satisfaction. Advances in Neural Information Processing Sys-
tems, 6, 1993.

12] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random
boolean expressions. Science, May 27 1994.

13] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distribu-
tions of SAT problems. In Proceedings, 10th National Conference on Artificial
Intelligence. AAAI Press/The MIT Press, July 12-16 1992.

14] Patrick Prosser. Binary constraint satisfaction problems: Some are harder
than others. In Proceedings of ECAI-94, pages 95-99, 1994.

15] G. Reinelt. TSPLIB - a traveling salesman problem library. ORSA Journal
on Computing, 3:376-384, 1991.

16] Barbara M Smith and Stuart A. Grant. Sparse constraint graphs and excep-
tionally hard problems. Research Report 94.36, School of Computer Studies,
University of Leeds, 1994.

10

Extended Abstract:

Integer Programming for Job Shop Scheduling

and a Related Problem

E. Andrew Boyd1

Texas A&M University

January, 1994

1Work performed jointly with Rusty Burlingame, Texas A&M University. However, only Dr. Boyd is

applying to attend the conference.

1 Introduction

The job shop scheduling problem is simple to state. Given m machines that can process

only one job at a time, and given n jobs that must be processed on each of these machines

in a prescribed, job-dependent order, find a scheduling of jobs to machines that minimizes

the time the last job is completed. Processing times can vary from job to job and from

machine to machine. The most striking aspect of this problem, and the aspect that makes

it an interesting topic for a conference on the relationship between OR and AI techniques,

is that it is a relatively easy problem to generate good feasible solutions for but a painfully

difficult problem to solve to provable optimality.

In 1965 Muth and Thompson proposed a 10 job, 10 machine problem that remained

unsolved for two decades. During this period, many researchers developed and applied new

algorithmic ideas for solving the job shop problem, including Ashour and Hiremath [4],

Balas [5], Barker and McMahon [7], Fisher, Lageweg, Lenstra, and Rinnooy Kan [13], and

many others. However, it was not until 1985 that Carlier and Pinson [11] finally published

the first optimal solution to the problem.

Following 1985 a number of papers were published on the polyhedral structure of schedul-

ing polyhedra, including Balas [6] and Dyer and Wolsey [12], and in 1991 Applegate and

Cook [3] undertook an extensive computational study based on this work. The results of

this excellent paper demonstrated that existing polyhedral results are completely inade-

quate for solving job shop scheduling problems. Applegate and Cook concluded their study

by enhancing the primarily combinatorial algorithm of Carlier and Pinson, solving some

difficult 10 job, 10 machine problems in the best known times to date. They remained un-

able to solve 7 difficult test problems from the literature, containing up to 15 machines and

20 jobs, and presented a challenge to the optimization community to solve these problems.

Recognizing the proven difficulty of solving job shop scheduling problems, many stud-

ies have been undertaken using genetic algorithms, simulated annealing, tabu search, and

other intelligent search procedures, including work by Adams, Balas, and Zawack [2], van

Laarhoven, Aarts, and Lenstra [20], Aarts, van Laarhoven, Lenstra, and Ulder [1], Tail-

lard [19], Barnes and Chambers [8], and others. In many cases the best known feasible so-

lutions for problems from the literature have been found using these algorithms. Of course,

these solutions are not known to be optimal since heuristic algorithms dö not provide a

proof of optimality.

In our research we have developed an algorithm for solving job shop scheduling problems

optimally using a combination of new algorithmic ideas and one of the most recent parallel

computer architectures. The algorithm provides the best known performance on a collection

of standard test problems from the literature on a scalar platform. However, we still have

many enhancements designed for the algorithm, and our goal is to solve some of the very

difficult open problems posed by Applegate and Cook. We hope to present new records at

the conference, but are in the process of completing the enhancements and the port to the

parallel platform, so we will not have any definitive results for at least another month.

In an effort to conform to the agenda of the conference, the proposed presentation

will consist of three parts. The first part will discuss general difficulties encountered by

exact solution methods for scheduling problems while describing important aspects of the

algorithm we have developed. The second part will present computational results for some

famous test problems, presenting both our new results and the best published results, and

drawing from both the the OR and AI literature. The final part will briefly present results for

a mathematically related problem arising in the context of national air traffic management,

in which very large problem instances were solved to provable optimality very quickly. In

this problem, the "jobs" are planes and the "machines" are airports. We will comment on

what makes one problem class so easy and the other so difficult.

As a personal note, I am primarily an optimizer and believe in the use of optimization

techniques whenever appropriate. However, as I continue to gain access to more problems

that come to me from various industrial sources, it is increasingly clear there are many

important problems that are not amenable to exact solution procedures. I would like to

come to better understand many of the intelligent search procedures now being employed

in the AI community, and the conference would provide an opportunity for me to achieve

this.

2 The Algorithm

All exact methods for the job shop scheduling problem are based on semi-enumerative

branch-and-bound algorithms. The primary obstacle to the success of these algorithms

on larger job shop scheduling problems is the lack of a good bounding procedure, leading

to extremely large tree searches. The method of bounding used most commonly in opti-

mization contexts — formulating the problem as an integer program and solving the linear

programming relaxation — has thus far proven inadequate due to the weakness of the in-

teger programming formulations that have been used. The work of Carlier and Pinson and

of Applegate and Cook focuses on using logical conditions to permanently fix variables at

optimal values, and using bounds from single machine subproblems that incorporate these

fixed variables. While the bounds are relatively weak, a significantly better alternative has

not been proposed, and what the the bounds lack in strength they make up for in speed of

computation.

Our computational work has proceeded in two different directions. In the first direction,

we have enhanced the earlier work of Carlier and Pinson and of Applegate and Cook, intro-

ducing new methods of variable fixing and extensions to the bounding procedure. We have

also paid careful attention to developing an algorithm that would parallelize efficiently. The

computational results presented in the following section were achieved using this algorithm.

The second research direction represents a more radical departure from existing method-

ologies and is based on relatively recent polyhedral results developed by Dyer and Wolsey [12].

The computational work of Applegate and Cook demonstrated that with proper polyhedral

refinements, the standard integer programming formulation of the job shop scheduling prob-

lem could be strengthened so that the bounds were roughly equivalent to those obtained

by the combinatorial bounding procedure used by Carlier and Pinson. The polyhedral

bounds could actually be made slightly stronger but at a very high computational price.

The strength/time tradeoff was very poor, and Applegate and Cook rightly concluded that

a polyhedral algorithm based on the standard formulation and known results would not

prove successful.

What has not been explored computationally, however, is the use of a complete refor-

mulation of the problem. Reformulation methods differ from polyhedral methods in that

the formulation is completely rethought rather than refined, and this is often achieved by

defining new variables. (The polyhedral relationship between different formulations is it-

self an interesting problem that has received some attention: see for example Boyd [9],

Martin [15], Rardin and Wolsey [18], and others.) The resultant reformulations often have

linear programming relaxations that generate much better bounds than their counterparts.

Unfortunately, these better bounds are commonly accompanied by a much larger problem

formulation.

In the case of job shop scheduling with integral processing times it is possible to define

the problem using binary variables t{jk,. where Ujk is 1 if job j is scheduled to start on

machine i at time k. Dyer and Wolsey [12] used a formulation based on these variables

for a single machine scheduling problem, demonstrating that the bounds generated by this

formulation are often very good, a fact generally conceded by most integer programmers.

The difficulty, of course, is that this problem formulation is generally quite large. For

example, with 15 jobs, 15 machines, and 200 potential time periods for each job/machine

pair (a reasonable estimate when a good feasible solution for the problem is known and

obvious limits on starting times are taken into account), a complete problem reformulation

would involve some 45,000 variables. Although solving problems of this size is easily possible

with present linear programming techniques, the formulations also have a similar number

of constraints and the constraints themselves are relatively dense.

It is conceivable but not likely that an algorithm based on this reformulation could

successfully solve any unsolved problems. However, it is possible to exploit the strength of

this reformulation to generate good lower bounds for small subproblems in a branch-and-

bound algorithm for the standard formulation. The bounds generated by this reformulation

are often significantly stronger than those generated by the combinatorial procedure used by

Carlier and Pinson. Even more, this reformulation is not limited to a single machine, and so

is not limited by single machine bounds used in all previous work. Bounds generated from

more than one machine will almost certainly prove vital in solving larger problems. Finally,

since the formulation will be used for generating lower bounds via a linear programming

relaxation, if the dual is solved good lower bounds can be generated without the need to

solve the relaxation to optimality Thus, it should be possible to use even relatively large

subproblems for bound generation.

It is important to realize that even minimally stronger bounds hold the key to solving

larger job shop scheduling problems. The problems that are now considered difficult require

millions and often tens of millions of nodes in the branch-and-bound tree. As much time

as these problems take to solve, memory usage is often the more significant issue. On

difficult problems, algorithms based on existing bounding procedures often fail to yield

any improvement for tens of thousands of nodes. If they can be produced in a reasonable

length of time, even marginally stronger bounds will have a profound impact on the size of

problems that can be solved.

3 Computational Results to Date

Computational results obtained to date on the set of 10 by 10 problems considered by

Applegate and Cook are presented in Table 1, with values from the Applegate and Cook

paper presented for comparison. While in all but one case these results are the best known

for these problems, they represent our present state of development and not our ultimate

goal. Further enhancements to the algorithm remain to be made, as does a port to a parallel

platform, the Silicon Graphics Power Challenge. We hope (and expect) to be able to report

on the solution of some of the open problems for the conference.

Burlingame and Boyd Applegate and Cook

Problem Init. Feas. Optimal Time (Seconds) Nodes Time (Seconds) Nodes

MT10 930 930 113.1 6399 314.8 16055

ABZ5 1245 1234 816.0 52781 837.8 57848

ABZ6 943 943 16.9 985 22.9 1269

LA19 848 842 417.6 26613 1300.7 93807

LA20
i

911 902 1144.6 74553 1269.1 81918

ORB1 1070 1059 370.9 18075 1379.5 71812

ORB2 890 888 844.6 48447 2290.5 153578

ORB3 1021 1005 3958.8 240747 2159.8 130181

ORB4 1019 1005 140.7 7007 935.2 44547

ORB5 896 887 125.4 7949 398.0 23113

For purposes of comparison, the value of the initial feasible solution was taken from the

paper of Applegate and Cook and the heuristic time required to find this solution is not

included (the heuristic represented an average of about 15% of total running time for the

Applegate and Cook results). We have focused on bounding and variable fixing, but use

a simple depth first branching strategy. Thus, when the initial feasible solution is too far

from optimality the iteration count potentially can be severely effected, and this accounts

for the behavior of the algorithm on problem ORB3. For example, when an initial feasible

solution of 1006 is used for ORB3, the node count reduces to 47829 and the time to 818.8

seconds.

Table 1: Results fog 10 by 10 Problems

References

[1] Aarts, E. H. L., P. J. M. van Laarhoven, J. K. Lenstra, and N. L. J. Ulder. 1994.

A Computational Study of Local Search Algorithms for Job Shop Scheduling. ORSA

Journal on Computing 6, 118-125.

[2] Adams, J., E. Balas, D. Zawack. 1988. The Shifting Bottleneck Procedure for Job Shop

Scheduling. Management Science 34, 391-401.

[3] Applegate, D., and W. Cook. 1991. A Computational Study of the Job-Shop Scheduling

Problem. ORSA Journal on Computing 3, 149-156.

[4] Ashour, S. and S. R. Hiremath. 1973. A Branch-and-Bound Approach to the Job-Shop

Scheduling Problem. International Journal of Production Research 11, 391-401.

[5] Balas, E. 1969. Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration

Algorithm. Operations Research 17, 941-957.

[6] Balas, E. 1985. On the Facial Structure of Scheduling Polyhedra. Mathematical Pro-

gramming Study 24, 179-218.

[7] Barker, J. R. and McMahon. 1985. Scheduling the General Job-Shop. Management

Science 31, 594-598.

[8] Barnes, J. W. and J. Chambers. 1992. Solving the Job Shop Scheduling Problem Using

Tabu Search. Technical Report ORP91-06, Graduate Program in Operations Research,

University of Texas at Austin.

10

[9] Boyd, E. A. 1992. A Pseudopolynomial Network Flow Formulation for Exact Knapsack

Separation. Networks 22, 503-514.

[10] Burlingame, R., E. A. Boyd, and K. S. Lindsay. 1993. Solving Large Integer Programs

Arising from Air Traffic Control Problems. Air Traffic Control Quarterly, 1. 255-276.

[11] Carlier, J. and E. Pinson. 1989. An Algorithm for Solving the Job-Shop Problem.

Management Science 35, 164-176.

[12] Dyer, M. and L. A. Wolsey. 1990. Formulating the Single Machine Sequencing Problem

with Release Dates as a Mixed Integer Program. Discrete Applied Mathematics 26,

255-270.

[13] Fisher, M. L., B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. 1983. Surrogate

Duality Relaxation for Job Shop Scheduling. Discrete Applied Mathematics 5, 65-67.

[14] Liu, W. G. 1988. Extended Formulations and Polyhedral Projection. Ph.D. Thesis,

Department of Combinatorics and Optimization, University of Waterloo.

[15] Martin, R. K. 1991. Using Separation Algorithms to Generate Mixed Integer Model

Reformulations. Operations Research Letters 10, 11.9-128.

[16] Muth, J. F., and G. L. Thompson. 1963. Industrial Scheduling, Prentice-Hall, Engle-

wood Cliffs, NJ.

[17] Nemhauser, G. L. and L. A. Wolsey. 1988. Integer and Combinatorial Optimization.

Wiley and Sons, New York.

11

[18] Rardin, R. L. and L. A. Wolsey. 1990. Valid Inequalities and Projecting the Multicom-

modity Extended Formulation for Uncapacitated Fixed Charge Network Flow Prob-

lems. Research Report CC-90-2. Institute for Interdisciplinary Engineering Studies.

Purdue University.

[19] Taillard, E. 1994. Parallel Taboo Search Techniques for the Job Shop Scheduling Prob-

lem. ORSA Journal on Computing 6, 108-117.

[20] van Laarhoven: P.. E. Aarts, J. Lenstra. 1988. Job Shop Scheduling by Simulated

Annealing. Report OS-R8809, Centrum voor Wiskunde en Informatica, Amsterdam,

The Netherlands.

12

A Constraint Satisfaction Approach
to Makespan Scheduling

Cheng-Chung Cheng and Stephen F. Smith *
The Robotics Institute

Carnegie Mellon University
Pittsbur gh, PA 15213

February 1, 1995

1 Introduction

In this paper, we consider the application a constraint satisfaction problem solving
(CSP) framework recently developed for deadline scheduling to more commonly stud-
ied problems of schedule optimization. Our hypothes is is two-fold: (1) that CSP
scheduling techniques can provide a basis for developing high-performance approxi-
mate solution procedures in optimization contexts, and (2) that the representational
assumptions underlying CSP models allow these procedures to naturally accommodate
the idiosyncratic constraints that complicate most real-world applications. We focus
specifically on the objective criterion of makespan minimization, which has rece ived
the most attention within the job shop scheduling literature. We define an extended
solution procedure somewhat unconventionally by ref ormulating the makespan prob-
lem as one of solving a series of different but related deadline scheduling problems, and
embedding a simple CSP procedure as the subproblem solver. We summarize results
of an empirical evaluation of our procedure performed on a range of previously stud-
ied benchmark problems. Our procedure is found to provide strong cost/performance,
producing solution s competitive with those obtained using recently reported shifting
bottleneck search procedures (Adams et al., 1988; Balas et al., 1993) at reduced compu-
tational expense. To demonstrate genera lity, we also consider application of our proce-
dure to a more complicated, multi-product hoist scheduling problem(Yih, 1994). With

*This research has been sponsored in part by the National Aeronautics and Space Administration,
under contract NCC 2-531, by the Advanced Research Projects Agency under contract F30602 -90-C-
0119 and the CMU Robotics Institute.

only minor adjustments, our procedure is found to significantly outperform previously
publi shed procedures-for solving this problem across a range of input assumptions.

We first introduce PCP (Smith and Cheng, 1993; Cheng and Smith, 1994), our
previously developed procedure for deadline scheduling; then we define an extended
procedu re, called Multi-PCP, for makespan minimization: and finally we summarize
the two computational studies.

2 Constraint Satisfaction Scheduling

Constraint satisfaction problem solving (CSP) has long been an area of active research
within the field of Artificial Intelligence, and CSP models and heuristics have increas-
ingly been investigated as a means for solving scheduling problems (Ch eng and Smith,
1994: Minton et al., 1992; Muscet tola, 1993; Sadeh, 1991; Smith and Cheng, 1993).
Much of this work has focused on variations of the job shop deadline problem. A job
shop dead line problem involves synchronization of the production of n jobs in a facility
with m machines, where (1) each job j requires execut ion of a sequence of operations
within a time interval specified by its ready time r, and deadline d:, and (2) each
operation 0{ requires exclusive use of a designated machin e il^for a specified amount
of processing time p,. The objective is to determine a schedule for production that sat-
isfies all temporal and resource capacity constraints. The job shop deadlin e problem
is known to be NP-Complete (Garey and Johnson, 1979).

There are different ways to formulate this problem as a CSP. Most frequently, it has
been formulated as a probl em of finding a consistent set of start times for each operation
of each job. The PCP procedure of interest here, alternatively, is rooted in a problem
representation akin to a disjunctive graph formulation (Balas, 1969). The problem
is assumed to be one of establishing seq uencing constraints between those operations
contending for the same resource. We define a set of decision variables Ordering^ for
each (0,, Oj) such that Mt- = Mj, which can take on two possible values: 0, -< Oj or

■Oj -< Oi.

2.1 Problem Representation

The PCP scheduling model can be formalized more precisel y as a type of general
temporal constraint network (GTCN) (Meiri, 1991). In brief, a GTCN T consists of
a set of vari ables {^,...,Xn} with continuous domains, and a set of unary or binary
constraints. Each variable represents a specific temporal object, either a time point
(e.g.. a start time sti or an end time et() or an interval (e.g. an operation Oi). A
constraint C may be qualitative or metric.

A qualitative constraint C is repr esented by a disjunction (Xq\ Aj) V... V (A,- qk Xj),
alternatively expressed as a relation set Xi{q\,....qk) Xj, where g, represents a basic
qualitative constraint. Three types of basic qualitative constraints are allowed:

1. interval to interval constraints - The GTCN definition of (Meiri, 1991) includes
Allen's 13 basic temporal relations (Allen, 1983): before, after, meets, met-by,
overlaps, overlapped-by, during, contains, starts, started-by, finishes, finished-by,
and equal. For convenience, we additionally include the relations before-or-meets
and after-or-met-by, which represent the union of relation pairs [before, meets)
and {after, met-by) respectively (Bell, 1989).

9 point to point cons traints - The relations identified in (Vilain and Kautz, 1986),
denoted by the set {<,=,>}. are allowable here.

3. point to interval or interval to point constraints - In this case, the 10 relations
defined in (Ladkin and Maddux, 1989) are specifi able, including before, starts,
during, finishe s, after, and their inverses.

Ametriccon straint C is represented by a set of intervals {/, ...,Ik] = {[ai, &i], •••, [a;t, 6^]}.
Two types of metric constraints are specifiable. A unary constraint C; on point A,- re-
stricts At's domain to a given set of intervals, i.e. (A,- G h) V ... V (A", € Ik). A binary
constraint dj between points A, and Xj restricts the feasible values for the distance
Xj — A,-, i.e., (Xj — Xi € h) V ... V (Xj — A,- £ 4). A special time point A'o can be
introduced to represent the "origin". Sin ce all times are relative to X. each unary
constraint C,- can be treated as a binary constraint Co,.

A GTCN forms a directed constraint graph, where nodes represent variables, and a
edge i —> j indicates that a constraint C,j between variables A, and Xj is specified.
We say a tuple A = (xi,...,xn) is a solution if X satisfies all qualitative and metric
constraints. A network is consist ent if there exists at least one solution. Figure 1 depicts
the constraint graph for a simple 2 job, 2 machine deadline scheduling problem.

An enumerative scheme for solving a GTCN is given in (Meiri, 1991). Let a labeling
of a general temporal constraint network, T, be a selection of a single disjunct (rela-
tion or interval) from each constraint specified in T. In the graph of Figure 1 there
are 4 possible labelings, owing to the {before-or-meets, after-or-met-by) relation sets
introduced to avoid resource contention between operation pairs (0\,Ö2) and (03,04).
Sin ce any basic qualitative constraint can be trans lated into at most four metric con-
straints (Kautz and Ladkin, 1991) (e.g., O, before-or-meets Oj translates to eit- < stj),
any labeling of T defin es a Simple Temporal Problem (STP) network - a metric network
containing only single interval constraints (Dechter et al., 1991). T will be consistent
if and only if ther e exists a labeling whose associated STP is consistent.

For any STP network, we can define a directed edge-weighted graph of time points,
Gdi called a distance graph. An STP is consistent if and only if the corresponding

Figure 1: Constraint Graph for simple 2 job, 2 machine problem

distance-graph d has no negative weight cycl es. The minimal network of the STP can
be specified by a complete directed graph, called the d-graph, where each edge, i —* j,
is labeled by the shortest path length, spij, from point i to point j in Gd (Dechter et al.,
1991). An STP network can be solved in 0(n3) time by the Floyd-Warshall's all-pairs
short est-paths algorithm, where n is the number of variables in the STP network.

Thus, a simple, complete procedure for solving a GTCN is to enumerate all labelings,
solve each corresponding STP and combine results. We can increase the efficiency
of this enumeration procedure by running a backtracking search over a meta- CSP
network, whose variables correspond to arcs in the GTCN that can be labeled in more
than one way and whose domains are simply the set of possible labelings. In the
case of the deadline scheduling problem, this leads to the set of decision variables
V = {Orderingij} previously identi fied, and a worst case complexity of C>(T?2

,V
I).

2.2 The PCP Procedure

The PCP scheduling model (Smith and Cheng, 1993; Chen g and Smith, 1994) augments
this basic backtracking search procedure to incorporate simple analysis of the temporal
flexibility associated with each sequencing decision that must be made. This analysis

is utilized in two ways: (1) to specify dominance conditions that allow identi fication
of unconditional decisions and early search space pruning, and (2) to provide heuristic
guidance for variable and value ordering (i.e.. decisio ns as to what variable to assign
next and what value to assign).

Specification and use of dominance conditions in PCP derives directly from the
concept of Constraint-Based Analysis (CBA) origi nally developed in (Erschler et al.,
1976; Erschler et al., 1980). This work utilized cal culations of the temporal slack
associated with an unordered operation pair to distinguish among cases where neither
ordering alternative, just one ordering alternative, or either alternative remains feasible.
For example, if slack{0{ -< Oj) = lftj — esti — {pi+pj) < 0 then 0, cannot be sequenced
before Oj. These conditions are applied to detect and post any "forced" sequencing
constraints at each step of the search, and to detect inconsistent solution sta tes.

In (Cheng and Smith, 1994), these dominance conditions are generalized to account
for the wider range of constraints that are specifiable in a GTCN . Suppose Orderir\g
is a currently unassigned variable in the meta-CSP network, and consider the d-graph
associated with the current partial solution. Let s,-,e,-,Sj, and tj be the sta rt and end
points respectively of operatio ns Q and Oj, and further assume spij is the shortest
path length from et- to Sj and spji is the shortest path length from Cj to s,-. Then, four
mutually exclusive cases can be identified:

Case 1. If sp^ > 0 and spji < 0, then O, -< Oj must be selected.

Case 2. If spji > 0 and sp^ < 0, then Oj -< O, must be selec ted.

Case 3. If spji < 0 and spij < 0, then the partial solution is inconsistent.

Case 4. If spji > 0 and sp^ > 0, then either ordering rela tion is still possible.

We note that the "slack-based" dominance conditions of (Erschler et al., 1976)
represent a special case of the above conditions; under classical job shop scheduling
assumptions (i.e., fixed processing times, simple job precedence constraints) slack(0{ -<
Oj) = sp^. However, many practical scheduling problems require satisfaction of more
complex temporal constraints (e.g., bounded delays between job steps, minimum and
maxi mum processing time constraints, inter-job synchroni zation). Under such more
complex modeling assumptions, shortest path information provides stronger domi nance
criteria.

The second distinguishing aspect of PCP is its use of sequencing flexibility analy sis
for variable and value ordering, which die tates how the search should proceed in the
undecided states (case 4 above). Intuitively, in situations where several Ordering^
decisions remain to be made, each with both possibilities still open, we would like
to focus attention on the decision that has the least amount of sequencing flexibility.

Conversely, in making the selected ordering decision, we intuitively prefer the ordering
relation that leaves the search with the most degrees of freedom.

One very simple estimate of the sequencing flexibility associated with a given Ordering^
is the minimum shortest path length, w.-j = min(spij, spji), which gives rise to a variable
ordering heuristic that selects the Ordering^ with the minimum a;tJ. This heuristic
makes reas onable sense; at each step, the decision which is clo sest to becoming forced
is taken. However, its exclusive reliance on w,j values can lead to problems. Consider
two ordering decisions Ordering^ with associated shortest path lengths spij = 3~and
spji = 100, and Ordering^ with spki = 4 and spik = 4. In this case, there are only
limit ed possibilities for feasibly resolving Ordering and deferring this decision may
well eliminate them, while a feasible assignment to Ordering^ is not real ly in any
jeopardy.

To hedge against these situations, PCP instead bases variable ordering decis ions
on a slightly more complex notion of biased shortest path length. Specifically, bspij =
spjj/x/S and bspji = spji/vS are computed, where S = min{sp,j, spJt}/ max{.sp,j, spji}
estimates the degree of similarity between the two values sp^ and spj{. The se-
quencing flexibility associated with a given decision Ordering^ is redefined to be
Uij = min(bspij,bspji), and the decision selected during variable ordering is the dec i-
sion with the minimum u>,-j. The value ordering heuristic utilized in PCP simply selects
the ordering relation implied by max(bspij,bspji), i.e. the sequencing constraint that
retains the most temporal flexib ility is posted.

2.3 More Efficient, Approximate Procedures

The dominance conditions and variable/value ordering heuristics that distinguish the
basic PCP procedure do not, of course, change the exponential worst case behavior
of the backtracking search required to guarantee comp leteness. Given our pragmatic
interest in sol ving large problems, we thus introduce two less-costly, approximate so-
lution procedures for later use. The first variant is simply de fined as a backtrack-free
version of the basic PCP procedure. In particular, total reliance is placed on the ability
of the search to move directly to a feasible solution; if Case 3 above is ever encountered
(i.e., no feasible ordering for a given ordering decision), the search simply terminates
in failure (and does not produce a solution). The effectiveness of this parti al solu-
tion procedure, which we will refer to as "Simple PCP" below, was demonstrated in
(Smith and Cheng, 1993) on a set of previously publishe d CSP scheduling benchmark
problems.

We also define a second variant, referred to below as "Simple PCP with Relaxation"
which extends Simple PCP in the following manner. Whenever an orderi ng decision is
recognized as Case 3, the unresolvable decision is set aside, and the search is allowed
to proceed with other, still resolvable ordering decisions. Once all feasibly resolvable

6

decisions have been made, the set U of unresolvable (Case 3) decisions is then re-
considered. For each Ordering^ in U, deadlines d, and dj are relaxed (i ncreased) by
\max(spij,spji)\ and the corresponding precedence relation (which is now feasible) is
posted. This second approximate procedur e thus always produces a solution, albeit one
that may not satisfy all original problem constraints. Both approximate procedures
can be seen to have worst case time complexity of 0n3|V|, where |V| is the number of
ordering decisions that must be made.

3 MULTI-PCP

The applicability of constraint satisfaction schedul ing procedures such as PCP to more
commonly stud ied problems of schedule optimization is not obvious. Here, we focus
specifically on the problem of makespan minimization and propose one possible ap-
proach to incorporating these techniques. Our approach is motivated by the concept
of problem duality exploited in the MULTIFIT algorithm (Coffman et al., 1978) in
the context of multiprocessor scheduling. Suppose that we are given an instance of
a makespan problem, denoted by UM(I) where / represents the problem data associ-
ated with this problem instance. If we know the minimum makespan for 11.^(7) to be
C*max, then we can reduce 11/^(7) to a special deadline problem IID(/, d), where each
job is assigned a 0 ready time and a common deadli ne d, with d = C^ax. For any
d > C^ax, we are ass ured that a feasible solution to Il>(/, d) exists. More important,
C*max defines a unique common deadline such that for d < C^ax, U.£>(I,d) has no fea-
sible solut ion. This dual relationship between problems IXf(J) and HD{I-, d) implies
that the makespan problem HM(I) can be reformulated as a problem of finding the
smallest common deadline, dmin, for which HD(I, d) has a feasible solution.

Given an algorithm for optimally solving the deadline problem Il£)(/, d), it is straight-
forward to construct an search procedure for determining dm,n (and its associated
schedule). We start with known upper and lower bounds du and tfx, on the com mon
deadline rfmt„; at each step, we attempt to solve HD(I, d) for d = (du + d^/2. If a
feasible schedule is found, du becomes d; otherwise, di becomes d. We continue the
search until du = di,, retaining the schedule with the best makespan as we go.

There is a complication, however, in utilizing this binary search procedure in con-
junction with a heuristic deadline scheduling procedure. The search may fail to yield
the best solution if the deadline scheduling procedure does not ensure monotonicity in
solution results across an interval of common deadlines. This property implies tha t if
a feasible solution cannot be found for a given common deadline d\, then a solution
will also not be found for any common deadline d2 < di, and likewise if a solution
is found for a given d1} then a solution will also be found for any d2 > d\. It is not
difficult to construct examples which demonst rate that neither of the simple, one-pass
PCP procedures defined in Section 2.3 possess this property, and consequently the

assumptions underlying use of binary search are no longer valid. For this reason, we
instead define our extended makespan minimization procedure in terms of a more con-
ventional k-iteration search; the approximate PCP procedure (eit her variant) is applied
k times with diff erent common deadlines evenly distributed between ß and du- While
k-iteration search obviously also provides no guarantee of finding the optimal solution,
empirical analysis has indicated that, with proper selec tion of k, use of k-iteration
search lead s to consistently better makespan minimization performance.

The only remaining issue concerns initial establishment of upper and lower bounds
on dmin. A lower bound di is provided by the proced ure originally described in (Flo-
rian et al., 197 1), where each machine is sequenced independently in order of earliest
operation start times and the maximum job completion time is then selected. An up-
per bound du can be obta ined through application of one or more priority dispatch
rules (Panwalker and Iskander. 1977). In the experiments reported below, a set of
six priority rules - SPT, LPT, LFT. EFT, MOR, and LOR - were applied, taking the
best makespan generated as du- For all runs, the bound k on the number of iterations
performed was set to 8.

4 Benchmark Problem Results

We applied two versions of Multi-PCP, defined by incorporating either Simple PCP
or Simple PCP with Relaxat ion as the base CSP scheduling procedure, on two sets of
previously studied benchmark problems. The first ("small") problem set consists of 39
job shop problems with sizes varying from 6-job by 6-machine to 15-job by 15-machine.
The fir st three problems, Mt06, MtlO, and Mt20, are the long sta nding problems of
(Fisher and Thompson, 1963). The remainder are taken from the 40 problems originall y
created by (Lawrence, 1984); of these 40 probl ems, we include only the 36 problems for
which optimal solutions have been obtained. The second ("large") set of benchmark
problems, are the problems more recently defined by (Taillar d, 1993). This set consists
of 80 larger job shop problems with sizes ranging from 15-job by 15-machine to 100-job
by 20-machine. For each problem in this set, Taillard reported the "best solution"
obtained with a tabu search proced ure that was run for extended time intervals.

We take as a principal comparative base, the shifting bottleneck family of proce-
dures, SB1 , SB3 and SB4 (Adams et al., 1988; Balas et al., 1993), which provides a
series of increasingly more accurate approximate procedures for makespan minimiza-
tion at increasingly greater computational expense. We compare the performance of
each of these procedures and Multi-PCP in terms of two meas ures: % deviation from
the optimal solution (or best tabu search solution in the case of the large problem set)
and amount of computation time required. Results for SBl were obtained on a Sun
SPARC 10 workstation using an implementation kindly provided to us by Applegate
and Cook (for detail please see (Applegate and Cook, 1991)). Results for SB3 and

8

SB4 were taken from (Balas et al., 1993). with the reported Sun SPARC 330 compu-
tation times translated to reflect expected performance on a SPARC 10. Multi-PCP
computation times were also obtained on a SPARC 10. All procedures considered were
implemented in C. Sin ce SB3 and SB4 results have not been reported for the large
problejn set, comparison here is rest ricted to Multi-PCP and SB1.

Table 1 summarizes the performance results obtained on the small benchma rk prob-
lem set (with results aggregated according to problem size for the Lawrence problems).
Associa ted computation times are given in Table 2. Compu tation times were found
to be identical for both Multi-PCP configurations at the level of precisi on reported
and are thus listed only once. [Detailed results for each individual problem for both
problem sets are reported in (Cheng and Smith, 1995); space constraints prevent their
inclusion here.]

First, we see that augmenting the base PCP procedure to produce "relaxed" deadline
solutions when feasible solutions are not found yielde d improved solutions in only a
small number of problems. In these isolated cases, however, the improvement provided
by the exten ded procedure was sometimes substantial; for the mt20 problem of Fisher
and Thompson, % deviation from the optimum was reduced from 8.76 to 2.32, matching
the best solution found for this problem by any of the shifting bottleneck procedures.
Since the extended Multi-PCP with Relaxation procedure incurs virtually no additional
computational cost, we restrict attention to the results obtained with this configuration.

The makespan minimization perf ormance of Multi-PCP on the small problem set
falls within the performance continuum defined by the shifting bottleneck procedures.
On average, Multi-PCP is seen to perform better than SBl and very close to SB3, with
SB4 yielding the best overall makespan performance. Relative performance was found
to vary across different problem subsets. On the three classic Fisher and Thompson
problems, Multi-PCP found equivalent or better solutio ns than both SBl and SB3
in all cases, and fai led to match the performance of SB4 in just one cas e. There is
little difference in performanc e on the very small, 6-machine problems; all procedu res
produce optimal or near optimal solutions in these problem categories. The results on
the lar ger, 10-machine problem categories reveal perhaps the most significant compar-
ative- performance tren d. For problems with low ratios of number of jobs to number
of machines, Multi-PC P exhibits its strongest comparative performance. In the case
of the 10x10 problem category, Multi-PCP performed better on average than both
SBl and SB3, and very close to SB4. Conversely, Multi-PCP was found to be less
effective (comparatively) on problems with high job to machine ratios. On the 30x10
problems (which turn out to be the easiest 10-machine problems for all procedures),
all three shifting bottleneck procedures were able to obtain optimal solutions, wherea s
Multi-PCP failed to find the optimum for 2 of the 5 problems in this category. Compu-
tat bnally, Multi-PCP's solution times on this problem set are seen to be comparable
overall to those of SBl.

Table 3 extends the performance comparis on of Multi-PCP and SBl to the larger
problem set of Taillard. Corresponding average computation times by problem category
are given in Tabl e 4. Ignoring the scalability problems encountered with the tested
SBl implementation (it couldn't solve some problems due to memory problems), the
results at larger problem sizes make much more expl icit the comparative performance
trends observed at the 10-machine problem level. Multi-PCP is seen to consistently
outperform SBl at low job-to -machine ratios, while the inverse is true at high job-to-
machine ratios. Both procedures achieve increasingly better solutions at higher job-
machine ratios (consistent with Taillard's observatio n that these problems are easier),
but_in no cases does either Multi-PCP or SBl achieve the best solutions generated by
extended Tabu search.

Examination of relative computational costs indicates some additional scalability
trends and tradeoffs. Multi-PCP was found to consistently produce solution s in less
computation time than SBl; the largest differential (roughly 4 times as fast) was
observed in the problem categories with the smallest job-to-machine ratios, and, on
average, Multi- PCP obtained solutions in about half as much CPU time as SBl. Multi-
PCP was also found to be much more predictable with respect to computati onal cost.
The variance in Multi-PCP solution times across all problem categories was extremely
low in comparison to SBl.

5 The Hoist Scheduli ng Problem

The above study relates the performance of Multi-PCP to state-of-the-art makespan
minimization procedures; perhaps somewhat surprising, it shows that Multi-PCP's use
of a CSP schedül ing model in conjunction with fairly simple search control heuristics
yields respectable performance (al though certainly not outperforming all previously
reported results). A complementary consideration is its broader applicability to more
idiosyncratic problem formulations.

To demonstrate generality, we consider application of Multi-PCP to a less-structured
makespan minimization problem: the multi-product version of the hoist scheduling
problem(Yih , 1994). The problem finds its origin in printed circuit board (PCB)
electroplating facilities. In brief, a set J of jobs, J = { Ju ..., Jn} each require a sequence
of chemical baths, which take place within a set M of m chemical tanks, M = {1, ...,m}.
Execution of a particular chemical bath operation 0, req uires exclusive use of tank np.
The processing time of any 0, required for a job j is not rigidly fixed; instead there
is a designated minimum time, p™,n, that j must stay in the tank for the bath to
acco mplish its intended effect and a maximum time, fax, over which product spoilage
occurs. All jobs move through the chemical tanks in the same order, tho ugh a given
job may require only a subset of the baths and thus "skip" processing in one or mor e
tanks along the way. All job movement through the facility is accomplished via a

10

single material handling hoist, H, whi ch is capable of transporting a job initially into
the system from the input buffer, from tank to tank, and finally out of the system into
the output buffer. H can grip only a single job at a time, moves between any two
adjacent stations (input buffer, tanks, or output buff er) at constant speed 5, and has
constant loading and unloading speeds, L and U, at any tank or buffer. The facility
itself has no internal buffering capability; thus jobs must be moved directly from one
tank to the next once they have entered the system. The objective is to maximize
facility thro ughput (or equivalently minimize makespan) subject to these process-and
resource constraints.

Most previous work in hoist scheduling has consi dered simplified versions of this
, problem. The single-product, hoist scheduling problem has received the most attention
(Phillips and Unger, 1976; Shapi ro and Nuttle, 1988; Lei and Wang. 1991; Armstrong
et al., 1994). In (Yih and Thesen, 1991; Yih et al., 1993), a hoist scheduling problem
involvin g a multi-product facility is considered, but without permitting variance in job
routings (i.e. no tank skipping). To our best knowledge, only (Yih, 1994) has reported
procedures for solving the general hoist scheduling problem defined above.

5.1 Extensions

The GTCN formalism introduced in Section 2.1 requires only slight extens ion to model
the hoist scheduling problem. The only constraints that are not directly formulatable
are those relating to synchronization of competing hoist (or material movement) op-
erations; in this case, basic qualitative relations are insufficient, as they do not allow
accounting of the "setup" time that may be required to position the hoist at the load-
ing location. To overcome this limitation, we extend our representation of qualitative
constraints to optionally include a metric quantifier. For purposes here, it is suffi-
cient to include only the following two extended relations: before-or-meets[lagtime]
and after-or-met-byflagtime], where lagtime > 0 designates a minimum metric sep-
aration between the related intervals. Thus, whereas the constraint Ot before-or-
meets 03 implies ei, < stj, the extended constraint O, before-or-meets[hij] Oj im-
plies eti + hij < stj. For each pair of hoist operations 0:- and Oj belonging to different
jobs, we specify the constraint 0, {before-or-meets[hij]. after-or-met-by[hjiJ} Oj, where
h{j = s * \destinatioiii — originj\ and hji = s * \destinatiorij — origiiii\. [see (Cheng
and Smith, 1995) for a complete discussion of how other aspects of the hoist problem
are modeled and a simple example].

The presence of sequence-dependent setups also impacts the variable and value or-
dering heuristics utilized with the base PCP procedure. Recall from Section 2.2, that
these heuristics rely on shor test path lengths as a basic indicator of sequencing flex abil-
ity. In essence, the shortest path from eti to stj for operations O, and Oj, designated
spij, indicates the current maximum feasible separation between these two points.
However, shortest path lengths provide only a partial (distorted) view of maximum

11

Separation if sequence-dependent setup delays are required. To sharpen the heuristics,
we generalize the basic measure of flexibility in PCP to incorporate sequence-dependent
lag times . Assume kj to be the lag time required if 0, is processed before Oj. and
hji be the lag time required if Oj is processed before 0, (i.e., the constraint specified
in the network is 0; {before-or-meets[hij]. after-or-met-by[hji]} Oj). We revise the
dominance conditions and search control heuristics specified in Section 2.2 by simply
substituting the extended calculation (spij — h^) for spl3 and, likewis e, substituting
(spji — hji) for spji. Note that these revised definitions continue to accommodate the
basic {before, after} relation (in which case, h^ and hji are both set to the smallest
possible temporal increme nt), as well as the basic {before-or-meets,after-or-met-by]
relation set (where hij, hji = 0).

5.2 Results

To assess perfor mance, we carried out computational study following the same experi-
mental design of (Yih, 1994). A PCB electroplating facility with 5 chemical tanks was
assumed. All problems generated consisted of 100 jobs, each with randomly generated
routings and tank processing time constraints, and all assumed to be simultaneously
available. Since mater ial flow is uni-directional, differences in job routings correspond
to which and how many tanks are skipped. Experiments were conducted to evaluate
performance along two dimensions relating to facility constraints and operation: first
as function of the relative speed of the hoist to mean tank processing time, and second
as a function of the degree of flexibility provided by tank processing time constraints.
To calibrate results, problems were also solved using the hoist scheduling procedure
previously developed by Yih (Yih, 1994), designated below as the "Yih94 algorithm".
Both procedures were implemented in C and run on a Sun SPARC 10 workstation.

In configuring Multi-PCP for these experiments, a simpler, "basic algorithm", used
in (Yih, 1994) as a baseline for comparison, was incorporated to provide the upper
bound du on the common deadline interval; di was obtained by computing the mini-
mum total required processing time (including hoist operations) for each job and taking
the maxi mum. To provide a more computationally competitive alternative to Yih's
"real-time" procedure, a simple problem decomposition method(N. Hirabayashi and
Nishiyama, 1994) was also employed; the input problem was partitioned into subprob-
lems with equal numbers of jobs (10 for these experi ments) and solved independently
by Multi-PC P, with the results then randomly combined to produce the overall solution
- yielding overall solution times of about 100 seconds.

We present only the results obtained from one of the experiments performed, on
problem sets designed to vary the ratio 7 = pmtn/s, where pmxn is the mean minimum
processing time of tank operations and s is the speed of the hoist in moving between
adjacent sys tem locations. Figure 2 summarizes the the performa nee of Multi-PCP
and Yih94 in this experiment. Values plotted for each 7 ratio rep resent the average %

12

£

O.
E

10 15 20 25 30 35 40 45

Mean processing times / hoist speed

50

Figure 2: Solution improvement rates for increasing ratio of mean processing time to
hoist speed

improvement over the basic algorithm on 10 randomly generated problems.

Both procedures are seen to generate the largest improvement for values of 7 in the
range of [10,25], with improvement rates degrading as 7 becomes larger or smaller. In
the case of Yih94, no improvement is obtained at either of the extreme points tested.
Multi-PCP, alternatively, yields an improvement rate of 8% at the smallest 7 value,
and as 7 becomes increasingly larger, its improvement rate stabilizes at about 15%.
Across all experiments, Multi-PCP is seen to produce solutions that, on average, are
15% better (in relation to the baseline solution) than those obtained with Yih94.

Details of the full experimental design and all result s obtained are reported in (Cheng
and Smith, 1995), and only strengthen the performance comparison.

6 Concluding Remarks

We have described a procedure for makespan scheduling based on formulation of the
problem as a series of CSPs and iterative application of a CSP scheduling procedure
with fairly simple search control heuri sties. It was shown to produce strong perform ance
in relation to shifting bottleneck procedur es on benchmark scheduling problems. Per-
haps more significant however, is the procedure 's generality. Real-world applications
are often complicated by additional temporal synchronization and resource usage con-
straints, and solution procedures which rely on problem structure that is pecul iar to the
canonical job shop problem formulation are of little use in such contexts. CSP sched ul-
ing models like Multi-PCP, alternatively, are based on very general representational
assumptions and naturally extend to accommodate richer problem formulations.

13

References

Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure for
job shop scheduling. Management Science, 34(3):391 - 401.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications
of the A CM, 11(26):832-843.

Applegate, D. and Cook, W. (1991). A computational study of the job-shop scheduling
problem. ORSA Journal of Computing, 3(2): 149 - 156.

Armstrong, R., Lei, L., and Gu, S. (1994). A bounding scheme for deriving the minimal
cycle time of a single-transporter n-stage processs with time window constraints.
European Journal of Operational Research, 78:130-140.

Balas, E. (1969). Machine sequencing via disjunctive graphs: An implicit enumerated
algorithm. Operations Research, 17:941-957.

Balas, E., Lenstra, J. K., and Vazacopoulos, A. (1993). The one machine problem
with delayed precedence constraints and its use in job shop schedul ing. Technical
report, Graduate School of Industrial Administration, Carnegie Mellon University,
#MSRR-589(R).

Bell, C. (1989). Maintaining project networks in automated artificial intelligence plan-
ning. Management Science, 35(10):1192—1214.

Cheng, C. and Smith, S. (1995). Applying constraint satisfaction techniques to job
shop scheduling. Technical Report CMU-RI-TR-95-03, The Robotics Institute,
Carnegie Mellon University.

Cheng, C. and Smith, S. F. (1994). Generating feasible schedules under complex
metric constraints. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, Seattle, Washington.

Coffman, E. G., Garey, M. R., and Johnson, D. S. (1978). An application of bin-packing
to multip rocessor scheduling. SIAM J. Comput.. 7:1-17.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint networks. Artificial
Intelligence, 49:61-95.

Erschler, J., Roubellat, F., and Vernhes, J. P. (1976). Findin g some essential charac-
teristics of the fea sible solutions for a scheduling problem. Operatio ns Research,
24:772-782.

Erschler , J., Roubellat, F., and Vernhes, J. P. (1 980). Characterizing the set of feasible
sequences for n jobs to be carried out on a single machine. European Journal of
Operational Research, 4:189-194.

14

Fisher, H. and Thompson, G. L. (1963). Probabilistic learning combinations of local
job- shop scheduling rules. In Industrial Scheduling. J. F. Muth, G. L. Thompson
(eds). Prentice-Ha 11, Englewood Cliffs, NJ.

Florian, M.. Trepa nt, P., and McMahon, G. B. (1971). An implicit enumeration algo-
rithm for the machine sequencin g problem. Management Science, 17(12):B-782-
B-792.

Garev, M. R. and Johnson, D. S. (1979). Computers and Intractability, a Guide to the
Theory of NP-Completeness. W.H. Freeman Company.

Kautz, H. and Ladkin, P. B. (1 991). Integrating metric and qualitative temporal rea-
soning. In Proceedings of the Nin th National Conference on Artificial Intelligence.
Anaheim, CA., pages 241-246.

Ladkin, P. B. and Maddux, R. D. (1989). On binary constraint networks. Technical
report, Kestrel Institute. Palo Alto, CA.

Lawrence, S. (1984). Resource constraint project scheduling: An experimental inves-
tigation of heuristic schedu ling techniques. Technical report, Graduate School of
Industrial Administration, Carnegie-Mellon Uni versity.

Lei. L. and Wang, T. (1991). The minimum common-cycle algorithm for cyclic schedu 1-
ing of two hoists with time window const raints. Management Science, 37(12):1629-
1639.

Meiri, I. (1991). Combining qualitative and quantitative constraints in temporal rea-
sonin g. In Proceedings of the Ninth National Confe rence on Artificial Intelligence,
Anaheim, CA., pages 260-267.

Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. (1992). Minimizing conflicts:
A heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58:161-205.

Muscetto la, N. (1993). Scheduling by iterative partit ion of bottleneck conflicts. In
Proceedings of the Ninth IEEE Conference on Artificial Intelligence Applications,
Orlando, FL.

N. Hirabayashi, H. N. and Nishiyama, N. (19 94). A decomposition scheduling method
for operating flexible manufacturing systems. International Jou mal of Production
Research, 32(1):16 1-178.

Panwalker, S. S. and Iskander, W. (1977). A survey of scheduling rules. Operations
-Research, 25:45 - 61.

Phillips, L. and Unger, P. (1976). Mathematical programming solution of a hoist
scheduling proble m. AIIE Transactions, 8(2):219-225.

15

Sadeh, N. (1991). Look-ahead techni ques for micro-opportunistic job shop scheduling.
Technical report, CMU-CS-91-102, School of Computer Science, Carnegie Mellon
University.

Shapiro , G. and Nuttle, H. (1988). Hoist scheduling for a pcb electroplating facility.
HE Transactions, 20(2):157-167.

Smith, F. S. and Cheng, C. (1993). Slack-based heuristics for constra int satisfaction
scheduling. In Proceedings of the Eleventh National Conference on Artificial In-
telligence, Washington, DC, page s 139 - 144.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64:278 - 285.

Vilain, M. and Kautz, H. (1986). Constra int propagation algorithms for temporal rea-
soning . In Proceedings of the Fourth National Conference on Artificial Intelligence.
Philade Iphia, PA., pages 377-382.

Yih, Y. (1994). An algorithm for hoist scheduling problems. Internat ional Journal of
Production Research, 32(3):501—516.

Yih, Y., Liang, T., and H.Moskowitz (1993). Robot scheduling in a circuit board
production line. HE Transactions, 25(2):26-33.

Yih, Y. and Thesen, A. (1991). Semi-markov decision models for real-time sched uling.
International Journal of Production Research, 29(11):2331—2346.

16

Table 1: % deviation from optimal solution for Multi-PCP, SB1, SB3, and SB4 across
small benchmark problem categories

Multi-PCP
Job x Multi-PCP w/ Relax SB1 SB3 SB4

Machine mean a mean a mean a mean a mean a

mt06 0.00 0.00 7.27 - 0.00 - 0.00 -
mtlO 2.04 2.04 2.37 - 5.48 - 1.08 -
mt20 8.7 6 2.32 5.41 - 2.92 - 2.92 -
10x5 1.53 1.58 1.47 1.46 1.59 1.84 1.44 2.05 1.44 2.05
15x5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 x 5 0.00 0.0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 x 10 2.44 1.75 2.44 1.75 4.94 5.32 3.16 2.33 2.25 1.17
15 x 10 4.29 2.34 3.78 1.99 6.34 2.60 2.72 1.91 2.72 1.91
20 x 10 3.12 2.65 3.12 2.65 6.57 7.26 1.37 1.23 0.96 1.26
30 x 10 0.30 0.58 0.30 0.58 0.00 0.00 0.00 0.00 0.00 0.00
15 x 15 4.15 0.73 4.15 0.73 6.16 2.10 3.09 0.92 3.01 0.97

All 1.93 1.20 1.72 1.15 3.01 2.39 1.51 1.05 1.24 0.92

Table 2: CPU time (in seconds) for Multi-PCP, SB1, SB3, and SB4 across small
benchmark problem categories

Job x Multi-PCP SB1 SB3 SB4
Machine mean a mean a mean <T mean a

mt06 0.05 - 0.12 - 0.78 - 1.45 -
mtlO 0.38 - 0.72 - 2.21 - 7.76 -
mt20 1.38 - 0.28 - 1.99 - 3.62 -
10x5 0.13 0.09 0.12 0.01 0.40 0.20 0.56 0.28
15x5 0.22 0.26 0.15 0.02 0.12 0.04 0.12 0.04
20 x 5 0.07 0.07 0.16 0.03 0.14 0.04 0.14 0.04
10x10 0.26 0.03 0.67 0.13 1.61 0.16 3.20 0.25
15 x 10 1.04 0.10 1.20 0.18 3.41 0.98 5.74 2.52
20 x 10 2.51 0.13 1.61 0.26 3.86 2.27 7.50 5.35
30x10 4.85 3.96 2.58 0.58 4.13 1.76 4.13 1.76
15x15 1.29 0.17 4.55 1.30 13.34 0.49 26.79 1.05
Average 1.19 0.60 1.21 0.31 2.96 0.74 5.29 1.41

17

Table 3: % deviation from the best solution for Multi-PCP and SBl across large
benchmark problem categories

Multi-PCP
Job x . Multi-PCP w/ Relax SBl

Machine mean a mean a mean a

15 x 15 5.74 0.74 5.57 0.78 9.00 2.05
20 x 15 7.52 1.82 7.27 1.49 10.15 2.14
30 x 15 9.88 2.57 9.65 2.47 8.38 3.06

50 x 15* 7.39 2.31 7.21 2.26 2.66f 1.57
20x20 7.60 1.54 7.33 1.33 9.98 2.29
30x20 11.76 2.43 11.64 2.37 13.05 2.55

50 x 20* 8.77 0.96 8.34 1.06 5.33f 1.82
100 x 20 4.88 1.4 1 4.88 1.41 -t

All* 8.38 1.72 8.14 1.65 8.36 2.21

f SBl able to solve nine out of ten problems.
X SBl unable to solve any of the 100x20 problems.
* Average performance is measured with respect to problems solved by both procedures.

Table 4: Mean and standard deviation, of CPU seconds for procedures, Multi-PCP and
SBl, performed on the large benchmark problems

Job x Multi -PCP SBl
Machine mean a mean a

15 x 15 1.20 0.08 5.10 1.3 9
20 x 15 3.42 0.33 7.63 1.06
30 x 15 11.90 0.85 14.68 1.72
50x15 68.11 7.12 141.33 104.84
20x20 3.73 0.32 15.64 2.91
30x20 15.51 0.77 31.58 4.03
50x20 94.90 6.28 165.83 94.75
100 x 20 857.36 38.43 - -

18

Combining the Large-Step Optimization with Tabu-Search:
Application to The Job-Shop Scheduling Problem

Helena Ramalhinho Lourenco
Departamento de Estatistica e Investigacäo Operacional
Faculdade de Ciencias
Universidade de Lisboa
Campo Grande C/2
1700 Lisboa, Portugal
e-mail: helena@gist.deio.fc.ul.pt

Michiel Zwijnenburg
Department pf Econometrics
Faculty of Economy
Erasmus University
Rotterdam, The Netherlands

1. Introduction

We apply the combined technique of tabu-search and large-step optimization to the
job-shop scheduling problem. The job-shop scheduling problem can be defined as
follows: given a set of machines and a set of jobs, the objective is to construct a
schedule which minimizes the time necessary to complete all the jobs.

In Section 2, we review local optimization methods, as local improvement and simulated
annealing, and a two-phase optimization method, known as large-step optimization,
which has recently been introduced for the traveling salesman problem. The first phase of
this new method consists of a large optimized transition in the current solution, while the
second phase is basically a local search method. The main advantage of the large-step
optimization methods is the use of optimization and tailored procedures in combination
with local search methods.

So far, the methods used in this second phase, also called small-steps phase, are the local
improvement and the simulated annealing methods. In this work we combine the large-
step optimization with a tabu-search approach and apply it to the job-shop scheduling
problem, because both methods separately applied to the problem gave good results.
We present this combined method and related computational results in Section 3.

In Section 4, we present some diversification strategies and relate them with the large-
step optimization method. Relevant computational results are also presented.
In Section 5, we present some conclusions and possible future research ideas.

2. Local and large-step optimization methods

Local improvement methods are iterative methods where initially a feasible solution of the
problem in question is obtained and at each step we make one local modification, or
transition, of a prespecified type in the current solution. If an improvement in the cost
function is obtained, then we accept the new solution as the current one, and otherwise
we reject it. The algorithm terminates when we cannot improve the current solution by
performing one transition, i.e., when we have a local optimal solution.

Consider now the job-shop scheduling problem. A solution corresponds to a schedule
and the cost function is the maximum completion time of the schedule. The method used
to obtain the initial schedule is the priority rule with priority function most work
remaining. An extensive study considering different methods to obtain initial schedule
has been done by Lourenco [1994].

Simulated annealing accepts solutions with increased value for the cost function, called
uphill moves, with small and decreasing probability, in an attempt to get away from a
local optimal solution and keep exploring the region of the feasible solutions. The
probability is controlled by a parameter known as the temperature, which is gradually
reduced from a high value, at which most uphill moves are accepted, to a low one at
which few, if any, such moves are accepted.

In our implementation of simulated annealing, we use the same method to generate the
initial schedule as for the local improvement method, and the neighborhood structure of
van Laarhoven, Aarts and Lenstra [1992] (VLA&L), but we use a different cooling
schedule. Our cooling schedule is very similar to the geometric cooling schedule
presented in Johnson et al.[1989].

Martin, Otto and Feiten [1992] introduced a large-step optimization method for the
traveling salesman problem, which was applied to the job-shop scheduling problem by
Lourenco [1993]. The large-step optimization method consists of three main routines: a
large-step, a small-steps method and an accept/reject test, which all three are
consecutively executed for a certain number of large-step iterations.

Local improvement methods proceed downhill for a while, making good progress, but
they tend to get trapped in local optimal solutions, usually far away from the global
optimal solution. Simulated annealing methods try to improve this by accepting uphill
moves depending on a decreasing probability controlled by the temperature parameter.
But, at small temperatures, they also tend to get stuck in valleys of the cost function.
Large-step optimization methods allow to leave these valleys even at small temperatures,
and only then a local search optimization method is applied, returning to a local optimal
solution. At this point, an accept/reject test is performed.

The three main routines of a large-step optimization method are: the method to perform a
large step, the one for the small steps and the accept/reject test.

The accept/reject test can accept only downhill moves. This looks like the local
improvement methods presented before, but where only local optimal solutions (with
respect to the small steps) are considered. On the other hand, the accept/reject test can
accept all moves or it can also look like the test done in a simulated annealing method, i.e.
all downhill moves are accepted and a uphill move is accepted with a small and
decreasing probability.

The large step should be constructed so that valleys are easily climbed over, and they
should be specially tailored to the problem in consideration. An important part of the
large-step optimization methods is the large-step itself. As mentioned, this procedure
should make a large modification in the current solution to drive the search to a new
region and, at the same time, to perform some kind of optimization to obtain a solution
not too far away from alocal (or global) optimum schedule. These two factors of the
large-stepmethod are the main differences from local search and local search methods.

So far, the methods that are usually associated with the small steps are local optimization
algorithms like the local improvement method or the simulated annealing method. In the
next section, we will consider the tabu-search approach as the small-steps procedure.

Different applications of the large-step optimization methods have appeared in the
literature. Martin, Otto and Feiten [1992] developed a large-step optimization methods for
the traveling salesman problem, where they used a 4-opt move as the large step, and, as
the small steps, a local improvement method based on 3-opt moves. Johnson [1990] also
applies a large-step local optimization method, that he called iterated Lin-Kernighan, to
the traveling salesman problem, using a 4-opt move as the large-step and the Lin and
Kernighan heuristic for the small steps. Lucks [1992] applied large-step optimization to

the graph partitioning problem, where the large step is done by interchanging a randomly
selected set of a given size and, as small steps, the Kernighan and Lin approximation
method and a simulated annealing approach were used. He concluded that for random

graphs, large-step optimization outperformed all other tested algorithms, while for
geometric graphs, the large-step method in some cases was outperformed.

The large step optimization is different from random restarts methods, Feo and Resende
[1994], in which randomly constructing an initial schedule followed by a local
optimization method is repeated for a number of iterations, returning the best solution
found. As suggested by Johnson [1993], large-step optimization methods can be viewed
as restart methods. But instead of starting with a different initial random solution at each
iteration, in the large step a solution S' is obtained from a solution S, by performing a
sufficient large optimized perturbation. In this way, all the achievements from previous
runs are not totally lost in the next runs. After every large step a local optimization
method is applied as a small steps procedure which leads the search process to a good
local solution. Also, these methods have the advantage of combining the ideas associated
with local search methods and tailored heuristics.

Next, we apply the large-step optimization methods to the job-shop scheduling problem.
For the small steps, we consider the following methods: the local improvement method
and the simulated annealing method.Lourenco [1994] proposed four methods to perform
the large step procedure. The first three methods are based on choosing one or two
machines and reordering the operations to be processed on these machines, Using some
prespecified method, and the last one is based on reversing the order of processing of
several operations. We use one of the most successful which can be described as follows:
reschedules sequencely two randomly chosen machines to optimality. First choose two
random machines and ignore the order of the operations to be processed in these
machines. Next for one of the two machines, determine the release and delivery times of
the operations to be processed by the respective machine, given the scheduled operations
on the other machines. Solve the one-machine schedule associated with this machine
using Carlier's algorithm, Carlier [1982]. Then repeat this process to reschedule the
second machine. For more information, see Lourenco [1994].

We will present computational results obtained from the application of all these methods
to several instances of the problem. The methods are tested on set of known instances.
Since the amount of testing is extensive, in preliminary tests we use just a subset of the
instance. From the computational results we can conclude that the local improvement
method is clearly inferior, even when several trials are performed. The large-step
optimization methods outperformed the simulated annealing method, but the difference
between these two became closer when the same amount of time was allowed for both. In
many cases, the large-step optimization methods found an optimal schedule and in others
the distance from the optimum or lower bound was small.

Given the results obtained by previous applications of the large-step optimization
methods to combinatorial optimization methods, including the job-shop scheduling
problem, and given the success of tabu-search to the same problem, it looks promising to
apply the large-step optimization method with as small steps method the tabu-search to
the job-shop scheduling problem.

3. Combined techniques of large-step optimization and tabu-search

The tabu-search, in contrary of local optimization methods refer previously, makes use of
historical information. The historical information is kept in three kinds of memory
functions: the short-term, the intermediate and long term memory function. The last two
will be considered in next section. Short term memory function has the task to memorize
certain attributes of the search process of the recent past and it is incorporated in the
search via one or more tabu list. For more information on tabu-search methods see for

example Glover [1989] and Glover et al.[1993].

The application of tabu search to the job-shop scheduling problem by Dell'Amico and
Trubian [1992] gave very good results, in small amounts of time. Note that a big
percentage of the running time for a large-step optimization method is spent by the
simulated annealing method. Therefore, an improvement for large-step optimization
methods should be achieved by using small-step methods that give good local optimal
solutions and run in a smaller amount of time than the simulated annealing. By the above
observations the tabu search methods looks like a good candidate to be used instead of
the local improvement method, that are fast but gives poor local optimal solutions, and
instead of simulated annealing that gives good local optimal solutions, but at very high
computational cost.

The basis for our implementation of the tabu-search is derived from Dell'Amico and
Trubian [1993], but there are some differences. Dell'Amico and Trubian used a bi-
directional method to obtain an initial schedule, while our tabu-search, like in the local
improvement method and simulated annealing approach, starts by constructing a initial
schedule according to the priority rule most remaining work. Due the objective of using
the tabu-search method in the large-step optimization method, in our implementation we
did not apply their intensification strategy which let the process return to the best solution
found so far in the process, if during a certain number of iterations the best solution did
not improve. Also different in our implementation is the use of exact methods for
calculating the longest path in a graph belonging to a feasible solution and for checking if
a graph contains a cycle. Similar to DeH'Amico and Trubian tabu-search are the
neighborhood structure (D&T), the tabu-list structure and the rules which define the
length of the tabu search.

The parameters in all programs are set in such a way that for a certain instance, they use
the same amount of computer time as our implementation of the Dell'Amico and Trubian
tabu-search method needed for 1200 iterations for the same instance.

We can conclude that the large-step optimization combined with the tabu-search
outperforms the simulated annealing and the large-step optimization using simulated
annealing. The average value out of 5 runs for the large-step optimization with tabu-
search is always smaller than the average results for the large-step optimization with
simulated annealing. In the beginning of the search in the simulated annealing approach
there is no fast improve as in the tabu-search. Therefore the simulated annealing waists
time in the beginning of the process, while this initial period is effectively used by tabu-
serach. Even the tabu-search alone outperforms the large-step optimization method with
simulatedannealing small-steps procedure but it is slightly inferior to the large-step
optimization with tabu-search. For example, for the famous instance of Muth and
Thompson with 10 jobs and 10 machines (MT10), the best value obtained by the large-
step optimization method with tabu search (LSTS) was the optimal value of 930 and the
average was 939 meanwhile if the simulated annealing (LSSA) was used as the small-
steps procedure the respective values were 951 and 963. Using our implementation of the
tabu-search (TS) alone we obtained the following values, 930 was the best obtained and
945 the average. For the open instance propose by Lawrence (LA21) the best value
obtained by LSTS was 1047, the best value that we are aware of, and the average was
1055. While for the LSSA the respective values were 1078 and 1096. Applying the TS
method alone we obtained the following respective values 1059 and 1065.

We have also compared several large-step optimization methods, which differ from each
other by the number of the large-step iterations. The combination of large/small steps
number of iterations are set in a special proportion to each other such that the complete
run of the algorithms takes as much time as one run of the previous large-step
optimization method with tabu-search, 12000 total iterations. In general the best results in
terms of the best and the average value were obtained by large step optimization with the
number of large step iterations between 5 and 20, with a little drop near 10 large set

iterations.

Viewing the results for both tabu-search with different neighborhoods, it seems that the
simple neighborhood structure (VLA&L) with a large number of iterations can compete
with amore complicated neighborhood structure (D&T), which need more time to pick the
best move out of all possible ones, and therefore may be executed for fewer iterations.
But more tests in this issue is need to be able to make stronger conclusions.

4. Diversification strategies

Long term memory is the basis for the diversifying strategy which has to lead the process
to new regions of the solution space. The objective of a diversification strategy is to
produce a new starting point, wherefore the local search can continue.

In this section we pay attention to a number of diversification strategies, which are
closely related to the large-step methods. Both a diversification strategy as well as a large-
step method apply a big change to the current solution, which provides them the
possibility to get the search process out of a local optima valley. The difference between
both methods is that diversification strategies always make use of a long term memory,
where, large-step optimization can apply a relevant big change to a given solution without
the use of information directly from the past, but using optimization techniques.

In the approach to obtain a new starting point, two kind of diversifying strategies can be
distinguished, strategies using a restart method and strategies using a method which lead
the search to new regions by an iterative process. These last kinds of diversification
methods usually provide advantages over restart methods, Glover[1993]. For a number
of iterations the random restart methods construct a random initial schedule, followed by
the application of a local optimization procedure, returning the best solution found. The
only difference with a more systematic restart method is that the initial solution is not
randomly obtained, but constructed with information from previous periods in the search
process. The storage of this information can be done with frequency counts. The idea is
to count the number of times that moves are applied during the non-diversification phase
of the search process, while during the diversification phase the moves are penalized
according to their frequency counts, with the objective to oblige the process to search for
moves not so often applied, resulting in never visited solutions.

Next, we present two diversification methods for the job-shop scheduling problem using
frequency counts. The first method is a restart method which begins every diversification
iteration by constructing a new starting schedule using frequency counts obtained in the
preceding steps of the method, that we will call small steps in analogy with the large-step
optimization methods. Every time the method finds a better solution in the small steps
phase, best solution and best value are updated and the frequency memorizes the
predecessor and successor of every job on every machine in the new best schedule. After
these period of small-steps is finished, the frequency counts for every job how many
times a job was the predecessor and the successor of any another job at any machine in
the improving schedules. We obtain a diversified schedule by constructing a schedule
according to a priority rule, which can be overruled if it wants to schedule an operation
after another operation resulting in an already existing neighbor combination in one of
the memorized improving schedules. In this way, we try to obtain a schedule wherein the
predecessor and successor of every job are different from the predecessors and
successors of the same job in the same machine in the memorized improving schedules.

The second diversification we have implemented is an iterative method, using frequency
counts, which leads on a path to new regions of the solution space. The frequency counts
are obtained in the previous iterations by storing the number of times a certain arc has
been reversed. In our implementation we memorized only the critical arcs, involved in a
move. This is obvious for the VLA&L neighborhood. For the D&T neighborhood

structure, counting the exact number of reversals would be very time consuming if we
consider all single reverses. Therefore, we decided to count only the number of time the
critical arcs are involved in a move. The diversification method consist of running the
same tabu-search method, but now the moves are penalized to the critical arcs involved in
the following way (see Laguna [1992]): compare-length(S')=length(S')+
penalty*frequency-of-critical-arc, where S' is the neighbor of S. If a critical arc of S is
involved in the applied move, the number of times this arc was picked in the preceding
steps is stored in the frequency-of-critical-arc. The penalty is the value which a move is
punished per applied move involving the arc. In this way moves which were frequently
applied in the preceding iterations are punished in the diversification phase to force the
method to apply new moves with the objective to drive the search process to new
regions.The value of the variable penalty and the number of iterations in the
diversification phase will be determined via trial and error method.

We obtained results with this method for four combinations of number of diversification
steps/small steps iterations. These combinations are similar to the ones used in testing the"
large-step optimization methods with tabu-search. With some exceptions the
incorporation of our restart diversification strategy does not contribute to a better
performance of the tabu-search method. We have observed that after the diversification
iterations, a resulting schedule has a high length. In general, the best values, as well the
average ones, are getting worse when the number of diversification steps increases.
Therefore we can conclude that our restart diversification strategy changes the schedule
too drastically. After the application of the diversification method, the tabu-search method
needs a lot of iterations to get near to good solutions. For the method with 5
diversification step iterations, the good solutions are already difficult to reach, as its
results in general are not better than the results of tabu-search without diversification.

Consider now the second diversification strategy, designated by iterative diversification
strategy. When we compare the results obtained by this method (TSID) with tabu-search
without diversification (TS) and large-step optimization with tabu-search (LSTS), we can
conclude that on average this method can compete with LSTS and performs better than
TS. As for example, for MT10 the best and average value obtained by TSID were 936
and 938, meanwhile for TS was 940 and 946, and for LSTS were 930 and 936. For
LA21, the results were, for TSID and LSTS were 1047 and 1055, respectively.

The reason that the iterative diversification strategy performs better than the restart one is
that, the iterative diversification with the chosen parameters changes the schedule enough
to get out of an eventually bad valley, but not so radical that the resulting schedule has
high length. The same happen when we apply the large-step procedure in the large-step
optimization methods. In the iterative diversification strategy a kind of "punished
optimization" is done, and with the right parameters, it does not take a lot of small-steps
iterations to get near a good solution again, contrary to what happens in the restart
diversification strategy.

5. Conclusions

The idea of combining large-step optimization method with a tabu-search approach seems
interesting to solve combinatorial optimization problem, due the good results that we
obtain from the application to the job-shop scheduling problem. Therefore, it will be
interesting to develop similar methods to solve other problems and test the efficiency of
these combined optimization methods. The combination of optimization and tailored
methods with local search methods may lead to an improvement in the use of these last
methods in solving problem. In our opinion, it is an very interesting area to develop.

Another issue that it will be relevant to explore is the connection between the large-step
procedure in the large-step optimization methods and the diversification strategies, briefly
mention in this work. The relation with the intensification strategies was not considered

in the work, but we are planning to do it in near future.

References

Carlier, J. [1982], "The One-Machine Sequencing Problem", European Journal of
Operational Research, 11:42-47.

Dell'Amico, M. and M. Trubian, [1993], "Applying Tabu-Search to the Job-Shop
Scheduling Problem", Annals of Operations Research, 41: 231-252.

Feo, T.A. and M.G.C. Resende, "Greedy Adaptive Search Procedures", to appear in
Annals of Operations Research.

Glover, F. [1989], "Tabu Search - Part I", ORSA Journal on Computing, 1(3): 190-206.

Glover, F. [1993], "Tabu Thresholding: Improved Search in Nonmonotonic
Trajectories", to appear in ORSA Journal on Computing.

Glover, F, M. Laguna, T. Taillard and D. de Werra [1993], "Tabu Search", Annals of
Operations Research, vol.41, no. 1-4.

Johnson, D.S. [1990]," Local Optimization and the Traveling Salesman Problem",
Proceedings of the 17th Annual Colloquim on Automata, Languages and Programming,
Springer-Verlag, 446-461.

Johnson, D.S. [1993], "Random starts for local optimization", DIMACS Workshop on
Randomized Algorithms for Combinatorial Optimization.

Johnson, D.S., C.R. Aragon, LA. McGeoch, and C. Schevon, "Optimization by
Simulated Annealing: an experimental evaluation; part I, graph partitioning", Operations
Research, 39(3):865-892.

Laguna, M. [1992], "Tabu-search primer", preprint.

Lourenco, H.R. [1994], "Job-Shop Scheduling: Computational Study of Local Search
and Large-Step Optimization Methods", to appear in European Journal of Operational
Research.

Lucks, V.B.F. [1992], "Large-Step Local Improvement Optimization for the Graph
Partitioning Problem", Master's Dissertation, Cornell University, Ithaca, NY, USA.

Martin, O., S.W. Otto and E.W. Feiten [1992], "Large-Step Markov Chains for the TSP
Incorporating Local Search Heuristics", Operations Research Letters, 11: 219-224.

van Laarhoven, P.J.M., E.H.L. Aarts and J.K. Lenstra, "Job Shop Scheduling by
Simulated Annealing", Operations Research, 40(1): 113-125.

An Overview of Learning in the Multi-TAC System

Steve Minton John A. Allen* Shawn Wolfe
Andrew Philpot

Recom Technologies
NASA Ames Research Center, M.S. 269-2

Moffett Field, CA 94035-1000
{ minton, allen,shawn,philpot}@ptolemy.arc. nasa.gov

January 31. 1995

1 Introduction

MULTI-TAC is a system that synthesizes programs for solving combinatorial problems. It
makes use of machine learning techniques to tailor its programs to particular distributions
of instances. In discussing MULTI-TAC, we adopt the standard terminology of computer
science and use the term "problem" to refer to a generic problem class and "instance" to
refer to a particular problem instance. For example, "Graph-3-Colorability" [4] is a problem
that requires that each node in. a graph be assigned one of three possible colors such that
no two neighbors have the same color. An instance of Graph-3-Colorability consists of a
specific graph and a specific set of colors.

To generate a program, MULTI-TAC accepts a problem specification from the user as
well as a set of sample instances or an instance generator. MULTI-TAC uses this informa-
tion both to specialize a library of generic search algorithms and generic search heuristics,
and to find the best combination of algorithm and search heuristics for solving the in-
stances provided. The result is a LISP program with specialized data structures, constraint
representations, and search control knowledge.

In this paper we give an overview of the MULTI-TAC system focusing on its learning
mechanisms. We present one of the areas of current research in the project, and summarize
some empirical results comparing the programs written by MULTI-TAC to those written
by humans.

2 The Multi-TAC Architecture

In order to present a problem to MULTI-TAC, it must be formalized as an integer Constraint
Satisfaction Problem (CSP), that is, as a set of constraints over a set of integer variables.
A solution is a complete assignment of values to variables such that the constraints on each
variable are satisfied.

For example, consider the NP-complete problem, "Minimum Maximal Matching" (MMM),
described in [4]. An instance of MMM consists of a graph G = (V,E) and an integer
K <\ E |. The problem is to determine whether there is a subset £" C E with \ E' \< K

* Also affiliated with the University of California, Irvine

vertexl

vertex2
vertex4 edge 4 vertex3

(declare-parameter 'K 2)
(declare-type-size 'edge 7)
(declare-type-size 'vertex 5)
(declare-relation-data

'((endpoint edgeO vertexO)
(endpoint edgeO vertexl)
(endpoint edgel vertexO)
(endpoint edgel vertex3)...))

Figure 1: An instance of MMM with K = 2. A solution £" = {edge2 edge5} is indicated in
boldface. The instance specification is on the right.

such that no two edges in E' share an endpoint, and every edge in E—E' shares an endpoint
with some edge in £". See Figure 1 for an example.

To formulate MMM as a CSP, we represent each edge in the graph with a variable. If
an edge is chosen to be in £", it is assigned the value 1, otherwise it is assigned the value
0. The constraints can be stated as follows:

1. If edgei is assigned 1, then every edgej that shares an endpoint with edgei must be
assigned 0.

2. If edge, is assigned 0, then there must exist an edgej such that edgei and edgej share
an endpoint, and edgej is assigned 1.

3. The number of edges assigned 1 must be less than or equal to K.

A ■problem specification describes the types (e.g., vertex and edge) and relations (e.g.,
endpoint) and specifies the constraints in a typed predicate logic. An instance specification
(Figure 1) instantiates the types and relations referred to in the problem specification. Our
constraint language is relatively expressive, as it allows for full first-order quantification and
the formation of sets and bags. Below we show how the first constraint above is specified,
for some edge Edgei:

(or (not (assigned Edgei 1))
(V Vrtx : (endpoint Edgei Vrtx)

(V Edgej : (endpoint Edgej Vrtx)
(or (equal Edgej Edgei)

(assigned Edgej 0))))

The notation (Va;: (endpoint x y)...) should be read as "for all x such that (endpoint x
y)..».

The constraint language includes two types of relations: problem-specific user-defined
relations such as endpoint, and built-in system-defined relations, such as assigned, equal
and less-than. (There are no functions; instead, we use two-place relations.) The assigned
relation has special significance since it represents the state during the search process. In
MMM, for example, the search proceeds by assigning each edge a value. In a solution state,
every edge must be assigned a value such that the constraints are satisfied.

The program synthesis process is hierarchically organized. At the top level, the sys-
tem employs one of a set of generic constraint satisfaction search algorithms, including
backtracking and iterative repair[8]. For the purposes of this paper, we refer only to the
backtracking search. The backtracking algorithm operates by successively selecting a vari-
able and then assigning to it a value. Backtracking occurs when all values for a variable
fail to satisfy the constraints. Thus, two obvious points for search control knowledge are
the choice of which variable to instantiate next and the choice of which value to assign.
Associated with the backtracking schema are generic heuristics for choosing variables and
values, including:

• Most-Constrained-Variable-First: This variable ordering heuristic prefers the variable
with the fewest possible values left.

• Most-Constraining-Variable-First: A related variable ordering heuristic, this prefers
variables that constrain the most other variables.

• Least-Constraining-Value-First: A value ordering heuristic, this heuristic prefers val-
ues that constrain the fewest other variables.

At the next level of program synthesis, MULTI-TAC first executes the first phase of its
learning mechanism by operationalizing the generic variable and value-ordering heuristics,
producing a set of candidate search control rules. This set may be large (typically between
10 and 100 rules in our experiments), since there are a variety of heuristics and each may
be specialized and/or approximated in several different ways.

The second phase of MULTI-TAC'S learning process determines (among other things)
which subset of the generated search control rules should be incorporated into the final
program. The system does this by hill-climbing through the space of system configurations,
each of which consists of a generic search template, a combination of search control rules,
and a variety of flag settings controlling other heuristic mechanisms (e.g., whether or not
to use forward checking). The hill-climbing search is based on the utility evaluation of a
given configuration. The evaluation is done by compiling a LISP program that implements'
the configuration, and then "experimenting" with the program by running it on a set
of instances. (The compilation process also includes a variety of additional optimization
techniques, such a finite differencing[13] and constraint simplification, which we will not
discuss here).

3 Generating Heuristics

MULTI-TAC uses two different methods for generating problem-specific search control rules:
one analytic, and one inductive.

3.1 An Analytic Approach

MULTI-TAC'S analytic method of generating search control rules is derived from the work
done by the. Explanation Based Learning (EBL) community [6, 12, 3]. In essence, the
process uses the problem specification to partially evaluate a generic heuristic. The partial
evaluation is guided by a meta-theory which specifies how terms in the generic heuristic
relate to terms in the problem specification.

For example, the generic heuristic for Least-Constraining-Value-First recommends that
the problem solver choose the value that least constrains the value choices of other variables.
One way of approximating this idea is to find the value that affects the fewest number of
other variables. Another approximation is to find the value that knocks out the fewest
number of possible values from other variables. Both of these approximations correspond
to meta-theories in MULTI-TAC

The analytic method builds search control rules by partially evaluating each of the
generic heuristic using the problem specification and each of the meta-theories. For example,
one of these partial evaluations uses the Least-Constraining-Value-First heuristic, the meta-
theory "find the value that effects the fewest number of other variables" and the Graph-
3-Colorability constraint, which states that a variable assigned colori cannot have any
neighbors that are assigned colori ■ The result is a specialized version of Least-Constraining-
Value-First that says "choose the color that is in the domain of the fewest number of
uncolored neighbors."

One of the advantages of this approach is that it allows one to generate several different
approximations or specializations of a generic heuristic based on the number of different
meta-theories. For instance, two different ways of approximating the Most-Constrained-
Variable-First heuristic include:

• Choose the node with the smallest domain.

• Choose the node with the most uncolored neighbors.

Individually, these rules only produce minor reductions in search. However, MULTI-

TAC is capable of composing search control rules such that the second rule can be used to
break ties if the first rule does not produce a unique choice. When composed, these two
rules produce the Brelaz[2] method, a well known technique for solving Graph-3-Colorability
problems.

A second advantage of the analytic method is that the meta-theories need only know
about the system defined types and relations, such as variable, value and assigned. The
problem definition provides the mapping between the system defined relations and the
user denned relations, such as neighbor and color, allowing the process to be used on any
specifiable problem.

3.2 An Inductive Approach

MULTI-TACS inductive method of generating search control rules is based on a form of
generate and test. The generation phase uses a brute-force enumeration method to system-
atically construct all combinations of primitives, connectives and quantifiers in the problem
specification language. The enumeration produces all well-formed formula starting from
length one to length A', where length is defined as the number of component atomic ex-
pressions. The final phase of the generation process constructs search control rules using
the formulas as antecedents.

The rules are tested on sample data to determine which of them might be useful. For
example, consider how a candidate control rules approximating the Most-Constrained-
Variable-First heuristic can be learned. The inductive method generates all candidate
variable-ordering rules up to size A', and tests them using examples that illustrate the
most-constrained heuristic. To find-examples, we run our CSP problem solver (without any
ordering heuristics) on randomly selected problem instances and periodically stop the solver
at variable selection choice points. Each example consists of a pair of variables and a state,
such that one variable is a most-constrained variable in that state and the other variable
is not. A variable is "most-constrained" if no other variable has fewer possible values. We
test each rule on each example by seeing if the antecedent holds for the most-constrained
variable and does not hold for the other variable. In this case we say the rule was correct
on the example. A sample set of rules generated by this process for Graph-3-Colorability
is the following:

• Choose the node with the smallest domain.

• Choose a node adjacent to the node with the most uncolored neighbors.

This initial filtering removes the rules that are not worth investigating. However, since
we do not expect our rules to be one-hundred percent correct, we retain all rules which are
correct more often than they are incorrect. The second phase of learning is then used, to
find the best combination of these rules.

4 Configuration Search

Once the candidate heuristics are produced, MULTI-TAC must find a configuration which
works well on the input instances. Each configuration corresponds to an list of search
control rules plus the algorithm schema. The space of possible configurations is exponential
in the number of candidate heuristics. To search through this space, MULTI-TAC uses a
beam search (essentially a parallel hill-climbing search). The beam search takes a beam
width B, a set of training instances, and an instance time bound T. The goal is to find
the configuration that performs best on the training instances. The best configuration is
the one which solves the most instances, given a time bound of T for each instance. If two
configurations solve the same number of instances, the one with the least total runtime is
preferred. This testing is a type of utility evaluation [6].

Each step in the beam search begins with a set of parent configurations. Initially, this
set consists of the "empty" configuration, which contains no heuristics. For each parent
configuration, the system generates all unique child configurations by adding an additional
heuristic onto the end of the parent's list. Thus each child configuration includes all of its
parent's heuristics, plus one additional heuristic. As alluded to earlier, the ordering on the
list is important, because MULTI-TAC prioritizes the rules for each choice point according
to their order on the list. For example, if a configuration includes two variable-ordering
rules, then the first rule has higher priority; the second rule is used only as a tie-breaker
when the first rule does not determine a unique "most-preferred" candidate. We refer to
this as a lexicographic control strategy.

Each child configuration is tested on the training set, and at the end of each iteration
the best B child configurations survive into the next round. These configurations become
the parents in the next round, and the process continues until no parent configurations can
be improved or the process is interrupted by the user.

We have found that this configuration improvement strategy works well. One reason
for its success is due to the lexicographic strategy of employing multiple heuristics. As
described earlier, the variable and value ordering heuristics are prioritized, with the first
heuristic applied to the set of candidates first and the subsequent heuristics used to break
ties in order. During the beam search, configurations are created by choosing the first
heuristic, and then adding a second, a third and so on. Since each subsequent heuristic is
added to the end of the list, it has a diminishing effect. This "smooths" the search space
of configurations, which is exactly the sort of space for which hill climbing is well suited.

The lexicographic ordering scheme also implies that if a child configuration performs
worse than its parent, the new heuristic is either giving advice that is worse than arbitrary
tie-breaking, which is the default, or is simply too expensive to evaluate; in either case
adding more heuristics is not likely to improve the situation. The diminishing return of
adding additional heuristics also makes it unlikely that configurations with many heuristics
will be particularly good. Therefore, good configurations are more likely to be shorter,
which means they will be found early in the search.

4.1 Reducing the Time Required for Utility Evaluation

One drawback to the basic approach to configuration search is that occasionally two (or
more) heuristics will interact synergistically, in which case they may be overlooked. For
instance, two heuristics that performed quite poorly when tested individually could perform
well when used together. Such "surprising pairs" are not likely to be discovered during the
search for a good configuration. In particular, we have found that variable-ordering and
value-ordering heuristics may tend to interact in this way. To detect these surprising pairs,
MULTI-TAC embellishes the beam search by evaluating all pairs of heuristics consisting
of a single variable selection heuristic and a single value selection heuristic, even if neither

heuristic performs well individually. Unfortunately the number of such pairs can be quite
large, making an expensive process even more expensive. This added expense, as well as
the cost of configuration search in general, motivates the research presented in this section.

The largest contributor to the cost of configuration search is the utility evaluation. As
previously mentioned, for each configuration examined a LISP program is compiled and run
on a set of instances. If the program is ill suited to solving the instances, it will continue to
run until the instance time bound is reached. This is a "black box" approach to determining
if a search control rule is working well. It would be useful if one could estimate how much
benefit a search control rule was providing after only a short period of time. This is the
focus of some of our current research.

Secondary performance characteristics are behaviors of a problem solver that can be
monitored at run-time and used to determine the relative utility of different heuristic
methods. For example, we can determine the relative utility of rules approximating Most-
Constrained-Variable-First heuristic by estimating the expected cost of using each rule
to find a solution. The cost of finding a solution is related to the cost of using the search
control rule and the size of the space searched. One of the ways in which Most-Constrained-
Variable-First reduces search is by causing the search engine to prune bad paths early. An
estimate of the resulting size of the pruned search tree can be produced during run-time,
as in [5]. The estimation process works by sampling the branching factor and the depths
of the paths explored and the search tree. This data can be collected during backtracking
search.

The recorded depth and branching factor information, in conjunction with the cost of
using a search control rule, can be used to determine the expected cost of solving the
instance. This number can be compared among the several possible operationalizations
of Most-Constrained-Variable-First. As a result, the utility evaluation can be performed
based on short, partial runs on each instance — runs that are just long enough to make a
confident prediction of search cost.

Preliminary results on the accuracy and benefit of using secondary performance char-
acteristics can be found in [1]. Specifically, the paper addresses predicting the best level of
constraint propagation in a backtracking framework and predicting the best tabu tenure in
an iterative repair framework.

5 Results

In this section we describe describe our experience with one of the problems, MMM(see
section 2), on which we performed an in-depth study. Four human subjects participated.
One of them was a member of the MULTI-TAC project. The other three were NASA
computer scientists who volunteered to participate in our study.1

The subjects were asked to write the fastest programs they could. Over a several-
day period our subjects spent between 5 and 8 hours designing and implementing their
respective programs. The subjects were given access to a "black box" instance generator
to test their programs. The instance generator randomly constructed solvable instances of
MMM by generating the subset E' and then adding edges.

The instance generator was parameterized, so that it could produce different distribu-
tions. We used three different distributions, one for each of the three volunteers. Our fourth
subject, the project member, wrote programs for all three of the distributions. As a final
comparison, Simple CSP records the performance of the backtracking algorithm without
any heuristics. i

'These experiments were done before the inductive method was devised and therefore only used the
analytic rule generation method; they are described in more detail in [7]. A comparison of the analytic and
inductive approaches to generating search control rules can be found in [10].

Experiment 1 Experiment2 Experiments
CPU sec unsolved CPU sec unsolved CPU sec unsolved

MULTI-TAC 4.6 0 27.8 1 449 7
Project member (PM) 3.4 0 76.8 2 1976 33
Subjectl 166 6 - - - -
Subject2 - - 8.9 0 - -
Subject3 - - - - 1035 7 .
Simple CSP 915 83 991 98 4500 100

Table 1: Experimental results for three distributions

Table 1 shows the results on 100 randomly-generated instances of the MMM problem.
Each of the three experiments in the table refers to a separate distribution. The volunteers
generated programs for only a single distribution, so some of the entries in the table are
blank. The first two distributions were run with a 10-CPU-second time bound. The third
distribution was considerably harder, so we used a 45-CPU-second time bound. In each
case, the time bound was established prior to the experiments so that the subjects could
design their programs accordingly. MULTI-TAC was trained on each distribution separately
(with the appropriate time-bound).

For each experiment, the column labeled "CPU sec" shows, for each program, the cumu-
lative running time for all 100 instances. The second column shows the number of unsolved
problems for each program.

The results show that there was considerable variation in the performance of the vari-
ous programs that were produced. Overall, MULTI-TAC performed on par with our human
subjects, and sometimes better. In the first two experiments, the code produced by MuLTI-
TAC was the second best. In the third experiment, the MULTI-TAC produced the best
code. In [7], we discuss the competing programs in some detail: here we will simply sum-
marize the results.

As it turned out. the first two distributions had very similar properties (although the
instances in the second distribution were larger), and all the competing programs in the
first two experiments had a similar design. On each iteration, an edge was selected to be
in the subset £", and backtracking occurred whenever any constraints was violated. The
instances were relatively unconstrained and therefore easy to solve. Basically, to get good
performance it was sufficient for the programs to statically sort the edges according to the
number of neighboring edges. (Other optimizations were helpful, but this was the most
important). Subjectl did poorly because he did not include this heuristic. Actually, he
reported trying it, but did not experiment with the distribution sufficiently to realize its
value.

The third distribution was significantly harder than the first two. For this distribution,
the project member used a modified version of his first program with a set of optimizations
which did not prove very useful. Subject3 also tried a backtracking approach, but found
that an iterative repair method [9] (a local search technique) proved superior.

Interestingly, on this distribution MULTI-TAC produced a backtracking program that
was quite different from the program it produced for the first two distributions. Initially, we
were surprised at its approach; neither the project members nor the other human volunteers
had thought of it. In retrospect, the idea is quite simple. The program used a different
value ordering heuristic, so instead of successively growing the subset £", the program was
grew the subset E — E', the set of of edges that were not in £". To accompany this value
ordering heuristic, the system selected several appropriate variable ordering heuristics. For
example, one of the selected heuristics was "choose the edge with the fewest neighbors".

This makes sense, given the value ordering rule, since the edges with the fewest neighbors
are the most likely to be included in E — E'.

6 Conclusions

In this paper we have given an overview of the MULTI-TAC system, focusing on the different
ways it specializes and selects search control heuristics that perform well on a given instance
distribution. We also gave a brief outline of our recent work whose goal is to reduce the
cost of evaluating competing programs by allowing the programs to be compared after
short partial runs. Finally, we described some early experiment?; showing the performance
of programs generated by MULTI-TAC which compared favorably to those generated by
humans.

Acknowledgments

The contents of this paper draw heavily from following previously published work: [7, 11, 10]

References

[1] J. A. Allen and S. Minton. Selecting the right heuristic algorithm: Runtime per-
formance predictors. Submitted to the Fourteenth International Joint Conference on
Artificial Intelligence.

[2] D. Brelaz. New methods to color the vertices of a graph. Communications of the ACM,
22:251-256, 1979.

[3] G. F. DeJong and R. Mooney. Explanation-based" learning: An alternative view. Ma-
chine Learning, 1(2), 1986.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., 1979.

[5] D. Knuth. Estimating the efficiency of backtrack programs. Mathematics of Compu-
tation, 29:121-136, 1975.

[6] S. Minton. Learning Search Control Knowledge: An Explanation-based Approach.
Kluwer Academic Publishers, Boston, Massachusetts, 1988. Also available as Carnegie-
Mellon CS Tech. Report CMU-CS-88-133.

[7] S. Minton. Integrating heuristics for constraint satisfaction problems: A case study. In
Proceedings of the Eleventh National Conference on Artificial Intelligence, San Jose
CA, 1993. AAAI Press.

[8] S. Minton, M. Johnston, A.B. Philips, and P. Laird. Solving large scale constraint
satisfaction and scheduling problems using a heuristic repair method. In Proceedings
AAAI-90, 1990.

[9] S. Minton, M. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelli-
gence, 58:161-205, 1992.

[10] S. Minton and I. Underwood. Small is beautiful: A brute-force approach to learning
first-order formulas. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, Seattle, WA, 1994. AAAI Press.

[11] S. Minton and S. Wolfe. Using machine learning to synthesize search programs. In
Proceedings of the Ninth Conference on Knowledge-Based Software Engineering, 1994.

[12] T. Mitchell, R. Keller, and S. Kedar-Cabelli. Explanation-base generalization: A uni-
fying view. Machine Learning, 1(1), 1986.

[13] D.R. Smith. KIDS: A knowledge-based software development system. In M.R. Lowry
and R.D. McCartney, editors, Automating Software Design. AAAI Press, 1991.

Incorporating Efficient Operations Research Algorithms

in Constraint-Based Scheduling

Philippe Baptiste and Claude Le Pape and Wim Nuijten

ILOG S.A., 2 Avenue Gallieni, BP 85, F-94253 Gentilly Cedex, France
Email: {lepape, nuijten}@ilog.fr

Url: http://www.ilogir

Abstract

We address the area of scheduling and the differences between the
way operations research and artificial intelligence approach scheduling.
We introduce the concept of constraint programming, and describe
how operations research techniques can be integrated in constraint
programming. Finally, we give a short overview of the results obtained
with our approach.

1 Introduction

Baker [1974] defines scheduling as the problem of allocating scarce resources
to activities over time. Scheduling problems arise in areas as diverse as
production planning, personnel planning, computer design, and time tabling.
Over the years, the theory and application of scheduling has grown into an
important field of research, and an extensive body of literature exists on the
subject. For more elaborate introductions to the theory of scheduling, we
refer to [Baker, 1974], [Coffman, 1976] and [French, 1982].

Roughly speaking, we can distinguish two fields of research that pay at-
tention to scheduling, viz., operations research (OR) and artificial intelligence
(AI). Traditionally, a lot of the attention in OR has been paid to schedul-
ing problems that are based on relatively simple mathematical models. For
solving the problem at hand, the combinatorial structure of the problem is
heavily exploited, leading to improved performance characteristics. We could
say that an OR approach often aims at achieving a high level of efficiency

in its algorithms. However, when modeling a practical scheduling problem
using these classical models, one is often forced to discard many degrees of
freedom and side constraints that exist in the practical scheduling situation.
Discarding degrees of freedom may result in the elimination of interesting so-
lutions, regardless of the solution method used. Discarding side constraints
gives a simplified problem and solving this simplified problem may result in
impractical solutions for the original problem.

In contrast, AI research tends to investigate more general scheduling
models and tries to solve the problems by using general problem solving
paradigms. We could say an AI approach tends to focus more on the general-
ity of application of its algorithms. This, however, implies that AI algorithms
may perform poorly on specific cases, compared to OR algorithms.

So. on the one hand we have OR which offers us efficient algorithms to
solve problems that however might not be well suited to be used in practice,
and on the other hand we have AI that offers us algorithms that are more
generally applicable, but that might suffer from somewhat poor performance.
Naturall}', we want the best of both worlds, i.e., we want efficient algorithms
that we can apply to a wide range of problems. In this article, we introduce
constraint programming which provides a general modeling and problem solv-
ing paradigm, and we show how to integrate it with OR algorithms, in order
to improve performance of the approach.

2 Constraint Programming

Generally speaking, constraint programming is concerned with solving in-
stances of the Constraint Satisfaction Problem (CSP). An instance of the
CSP consists of a set of variables, a domain for each variable specifying the
values to which the variable may be assigned, and a set of constraints on the
variables. A constraint denotes a relation between the values of one or several
variables. For instance, if x is an'integer variable, x < 10 is a constraint on
the variable x. Solving an instance of the CSP consists in assigning values
to variables such that all constraints are satisfied simultaneously.

In constraint programming, constraints are exploited to reduce the amount
of computation needed to solve the problem. More specifically, they are used
to reduce the domains of the variables and to detect inconsistencies. This
deductive process is called constraint propagation.

For example, from x < y and x > 8, we deduce, if x and y denote

integers, that the value of y is at least 10. If later we add the constraint
y < 9, a contradiction is immediately detected. Without propagation, no
contradiction would be detected until the instantiation of both x and y.

For complexity reasons, constraint propagation is usually incomplete.
This means that some but not all the consequences of constraints are de-
duced. In particular, constraint propagation cannot detect all inconsistencies.
Consequently, heuristic search algorithms must be implemented to explore
possible refinements of the instance of the CSP. e.g., by assigning a value
to each variable, and exhibit solutions that are guaranteed to satisfy the
constraints.

In the remainder of this article, Sections 3 and 4 discuss the propagation
of two types of constraints that occur in scheduling problems, viz., temporal
constraints and resource constraints. Furthermore. Section 5 presents an
overview of the results we obtained with our approach. Finally, Section 6
presents some conclusions.

3 Temporal Constraints

A temporal constraint is logically expressed by a formula /,■ + d < Iy /,- and
Ij are time points and d a delay that must elapse between these time points.
Generally, a time point corresponds to the beginning or the end of an activity.
If A and B are two activities, and if a time unit corresponds to a minute, the
temporal constraint end(A) + 5 < start(B) means that at least 5 minutes
must pass between the end of A and the beginning of B. A special time point
0 is often defined to represent the origin of time: 0 + 60 < start(A) means
that A cannot start before date 60; end(A) - 120 < 0 means that A cannot
end after date 120.

Ford's algorithm [Ford, 1956; Gondran k Minoux, 1984], which computes
the length of the longest paths from a node N0 to the other nodes Ni ... Nn

of a valued oriented graph, can be used to compute the earliest start and end
times of activities. Informally, this algorithm can be described as follows.

1. Let 7r(Ao) = 0 and ir(Ni) = —oo for every i between 1 and n.

2. For every j between 1 and n, replace w(Nj) with the maximum of ir{Nj)
and ma,x(ir(Ni) + /,-_,-) where /,-_,- denotes the length of the arc going from
Ni to Nj when this arc exists.

3. Iterate step 2 until ir(Ni) becomes stable for every i.

This algorithm can also be used to compute the latest start and end times of

activities by exploring the graph in the reverse direction. When the temporal
constraints are globally compatible, it updates the time-bounds of activities
(earliest and latest start and end times) in O(mn) where m is the number
of constraints and n the number of activities. Note that one can easily
implement an incremental version of the algorithm. Indeed, at each iteration,
it is useless to re-compute (7r(.V,) + /,j) if the preceding iteration did not result
in an update of 7r(7V,). Consequently, the algorithm can be modified to make
the update of ir(Ni) trigger, at the next iteration, the update of n(Nj).

In a constraint programming framework, the constraint 1, + d < Ij can be
propagated in a very simple way. Each time the minimal value of 7, changes
(becomes Jf1"1), the minimal value of Ij is set to the maximum of I™,n + d and
the current minimal value of Ij. In the reverse direction, each time the max-
imal value of Ij changes (becomes I™*), the maximal value of /,- is set to the
minimum of I™ax — d and the current maximal value of /,-. The main advan-
tage of the constraint programming implementation is that each constraint is
considered separately. If other constraints exist, the algorithm that performs
the propagation propagates also the other constraints. Other constraints can
consequently be designed independently of the temporal constraints.

An issue that arises is the efficiency of a constraint programming imple-
mentation, compared to Ford's algorithm. It is shown in [Le Pape, 1988]
that the constraint propagation steps can be ordered to obtain the same
complexity as Ford's algorithm when the temporal constraints are globally
compatible. In particular, the constraint propagation method which consists
in using a first-in first-out queue of constraints updates the time-bounds of
activities in 0(mn). This method is used in ILOG SCHEDULE [Le Pape,
1994], an add-on to ILOG SOLVER, a C++ library for constraint program-
ming [Puget, 1994].

4 Resource Constraints

In scheduling problems, activities require resources which are available in fi-
nite amounts over time. Three main classes of resources can be distinguished:

• bnary resources: a unary resource is a resource of capacity one (e.g. a
specific person). Two activities that require the same unary resource
cannot overlap.

• Volumetric resources: a volumetric resource typically represents a pool
of many non-differentiated resources (e.g. a group of people with the

same capabilities). At any point in time, the number of units required
by the executing activities cannot exceed the number of units that are
available.

• State resources: a state resource is a resource that can be used for an
activity only when it is in a given state. Two activities that require the
same resource in different states cannot overlap.

There does not appear to exist algorithms as general as Ford's algorithm to
optimally update the time-bounds of activities submitted to resource con-
straints. As a matter of fact, the problem of eliminating all the impossible
start and end times of activities submitted to resource constraints is NP-hard
[Garey &: Johnson, 1979]. Even when only one unary resource is considered,
the problem of determining whether there exists a schedule satisfying given
time-bounds for each activity is NP-hard [Garey & Johnson. 1979]. As a
result, many OR algorithms have been developed to compute time-bounds
for specific problems. Each of these algorithms corresponds to a different
tradeoff between the generality of the algorithm, i.e., the class of problems
to which the algorithm applies, the precision of the computed time-bounds,
and the computational complexity of the algorithm.

One of the most successful OR algorithms for updating time-bounds of
activities submitted to unary resource constraints was proposed by Carlier
& Pinson [1990]. The main principle of this algorithm is to compare the
temporal characteristics of an activity ,4 to those of a set of activities ft
which require the same resource. Let estA denote the earliest possible start
time of A, letA the latest possible end time of A, and pA the processing time
of A. Let estn denote the smallest of the earliest start times of the activities
in ft, letn denote the greatest of the latest end times of the activities in ft,
and pn denote the sum of the processing times of the activities in ft. The
following rules apply:

letn - estn < pA + pQ

let A - estQ < PA+PCI

letn - estn < pA + Pa
letu - estA < PA+PQ

[A is before all activities in ft]

■ [A is after all activities in ft]

New time-bounds can consequently be deduced. When A is before all activi-
ties in ft, the end time of A is necessarily at most let^ -pn- When A is after
all activities in ft, the start time of -4 is necessarily at least cs^n + pQ.

The technique which consists in applying these rules is known as edge-
finding. Notice that if n activities require the resource, there are potentially
0(n * 2") pairs (A, Q) to consider. An algorithm that performs all of the
possible time-bound adjustments in 0{n2) is presented in [Carlier & Pinson,
1990]. Impressive results have been obtained by applying variants of this
algorithm as part of a tree search procedure to the Job Shop Scheduling
Problem (JSSP) as defined in [Garey & Johnson, 1979]. Examples of such
approaches are [Carlier & Pinson, 1990], [Applegate k Cook, 1991], and [Car-
lier & Pinson, 1994]. However, as in the case of temporal constraints, it is
unclear what ought to be done when a problem requires the satisfaction of
other types of constraints, in addition to temporal and unary resource con-
straints. Clearly, Carlier & Pinson's algorithm could still be useful, but a
specific implementation may not be easy to integrate with the other compo-
nents needed to solve the problem.

This contrasts with the work done in the field of AI. In this field, various
classes of resource constraints are naturally integrated in a global framework
that incorporates other types of constraints as well. Two main mechanisms
are used to propagate resource constraints.

• The first mechanism uses time-tables to maintain information about the
variations of resource utilization and resource availability over time.
Resource constraints are propagated in two directions: from the re-
sources to the activities, in order to update activity time-bounds ac-
cording to the availability of the resources: from the activities to the
resources, in order to update resource utilization and availability ac-
cording to the time-bounds of activities. For example, when the latest
start time 1st of an activity is smaller than its earliest end time eei, it
is sure that the activity will use the resource between 1st and eet. Over
this period, the corresponding resource amount is no longer available
for other activities. In ILOG SCHEDULE [Le Pape, 1994], time-tables
can be used to represent unary, volumetric, and state resources. They
also enable to state that at least some amount of resource capacity
must be used over a given period.

• The second mechanism consists of posting disjunctive constraints. The
most basic disjunctive constraint states that two activities A and B
that require the same unary resource R cannot overlap in time: either

A precedes B or B precedes .4. This can be written as

end(A) < start{B) V end(B) < start(A).

Constraint propagation consists in reducing the set of possible values
for the start and end variables: whenever the smallest possible value
of end(A) exceeds the greatest possible value of start(B), A cannot
precede B\ hence B must precede .4; the time-bounds of A and B can
consequently be updated with respect to the new temporal constraint
end(B) < start(A). Similarly, when the earliest possible end time of B
exceeds the latest possible start time of A, B cannot precede A. When
neither of the two activities can precede the other, a contradiction is de-
tected. This way of propagating constraints enforces arc-B-consistency
as defined by Lhomme [1993]. Several extensions of the basic disjunc-
tive constraint are discussed in [Baptiste & Pape, 1995]. This includes
(1) activities that may or may not require the resource, (2) disjunc-
tive constraints applied to state resources, and (3) setup times between
activities that require the same resource. These extensions are all pro-
vided in ILOG SCHEDULE.

A few issues are raised by the integration of algorithms such as the edge-finder
of Carlier & Pinson in a generic constraint propagation framework.

• First, it is necessary to identify the events that should trigger the exe-
cution of the algorithm. When activities are certain to use the resource
and their durations are fixed, only the modification of the earliest start
and latest end times of the activity can lead the edge-finder to deduce
more precise time-bounds. When the processing time of an activity is
itself a constrained variable, the situation is different: to deduce only
correct information, the edge-finder must rely on the smallest possible
duration of the activity; when the smallest possible duration increases,
the edge-finder must be called again to ensure that all the possible
adjustments are done.

• Second, efficiency issues have to be considered. Indeed, when both tem-
poral constraints and resource constraints apply, it is intuitively more
efficient to deduce all the consequences of temporal constraints prior to
apply the edge-finder. The main reason for that is that the propagation
of each temporal constraint has a very low cost in comparison to an
application of the edge-finder. The edge-finder is consequently delayed
until the other constraints have been propagated.

• Implementation issues also have to be considered. In the context of
an incremental constraint satisfaction framework, it must be possible
to add a new activity at any stage of the problem-solving process.
This modifies the data structures that can be used as a basis for the
implementation of the edge-finder.

A variant of the edge-finder of Carlier & Pinson [1990] is presented in [Nui-
jten, 1994]. This algorithm has the same complexity but has a much simpler
structure. It, furthermore, can easily be generalized to be used for instance
for volumetric resources, as is shown in [Nuijten, 1994]. There, the algorithm
is already integrated in a constraint-based approach.

Both the [Carlier k Pinson, 1990] and the [Nuijten, 1994] versions were
tested on unary resources in the context of ILOG SCHEDULE. We remark that
Carlier & Pinson [1994] presents a variant running in 0(n * log(n)) that we
have not tested yet. The experimental results presented in [Baptiste. 1994]
show that the two 0{n2) versions are roughly equivalent in terms of CPU
time. They also show edge-finding to be extremely powerful in comparison to
arc-B-consistency. As the [Nuijten, 1994] version was simpler, it was retained
and definitely implemented in version 1.1 of ILOG SCHEDULE. This allows
the users of ILOG SCHEDULE to enjoy the efficiency of the edge-finder in the
flexible context of constraint programming. In particular, the use of the edge-
finder does not prevent the user from defining activities of initially unknown
duration, activities that may or may not require the resource, setup times
between activities, or any other user-defined constraint.

5 Computational Results

This section presents some of the results we obtained by incorporating OR
algorithms in constraint-based approaches to scheduling.

5.1 Job Shop Scheduling Approximation

Nuijten [1994] presents an approximation approach based on constraint sat-
isfaction techniques which is applied to a number of scheduling problems
amongst which the JSSP and a generalization of the JSSP in which ma-
chines can have an arbitrary capacity, called the Multiple Capacitated Job
Shop Scheduling Problem (MCJSSP) [Nuijten & Aarts, 1994].

The results on these two problems are good. Out of 43 well known in-
stances of the JSSP. 31 instances are solved to optimality, including the no-
torious MT10 instance, and the deviation of the minimum found makespan

from the best known lower bound is on average 0.72%. Vaessens, Aarts k
Lenstra [1994] compare 20 of the best approaches to the JSSP for 13 instances
of the aforementioned set of 43 instances. Ranking the approaches that were
used according to effectiveness, this approach comes in the sixth place with
an average deviation of 2.26%, where the tabu search approach of Nowicki
k Smutnicki [1993] performs best with an average deviation of. 0.54%. The
results on the MCJSSP are also good; out of 30 instances, 22 are solved to
optimality and the deviation of the upper bounds from the lower bounds on
the minimal makespan is on average 0.52%. For more extensive results we
refer to [Nuijten, 1994].

5.2 Job Shop Scheduling Optimization

We also devised an optimization algorithm for the JSSP [Baptiste, 1994].
This algorithm is based on Branch-and-Bound backtracking search with con-
straint propagation being performed at each node of the search tree. It was
tested on more than eighty instances. Table 1 gives the results obtained on
the ten 10x10 JSSP instances used by Applegate k Cook in their compu-
tational study of the JSSP [Applegate k Cook, 1991]. In Table 1, columns
"BT" and "CPU" give the total number of backtracks and CPU time needed
to find an optimal solution and prove its optimality. Columns "BT(pr)"
and "CPU(pr)" give the number of backtracks and CPU time needed for the
proof of optimality. Column "CPU(l)" gives the CPU time needed to find
the first solution, including the time needed for stating the problem and per-
forming initial constraint propagation. Column "TM" gives the total amount
of memory used to represent and solve the problem (in kilobytes). All CPU
times are given in seconds on a HP715/50 workstation.

ILOG SCHEDULE performs better or about as well as the specific proce-
dure of Applegate k Cook [1991] on five problems in terms of CPU time, and
on seven problems in terms of the number of backtracks needed to solve the
problem. Over the ten problems, the total number of backtracks for ILOG
SCHEDULE is 579711, while the total number of nodes explored by Applegate
k Cook's algorithm is 674128. The integration of an edge-finder within ILOG
SCHEDULE allows its users to enjoy the flexibility inherent to constraint pro-
gramming, with performance in the same range of efficiency as specific OR
algorithms.

Instance CPU(l) BT CPU BT(pr) CPU(pr) TM
MT10 .6 69758 1916.3 7792 230.6 140
ABZ5 .6 17636 401.7 5145 115.0 136
ABZ6 .5 898 27.3 291 8.4 136
LA19 .6 21910 529.6 5618 137.9 140
LA20 .6 74452 1521.0 22567 443.8 136
ORB1 .7 13944 412.6 5382 165.4 144
ORB2 .6 114715 3552.3 30519 927.4 140
ORB3 .6 190117 5597,0 25809 770.7 140
ORB4 .5 64652 2004.1 22443 701.8 140
ORB5 .6 11629 303.6 3755 96.8 140

Table 1: Results on ten 10x10 instances of the JSSP

5.3 A Practical Problem

The edge-finder was also tested on an industrial project scheduling problem
submitted by a customer of ILOG, and found to be extremely difficult to
solve. The problem consists of scheduling two projects that require common
resources. There are 45 activities and five resources to consider. Each activity
requires up to four resources. Within each project, activities are subjected
to precedence constraints. Three of the resources are unary resources. The
number of activities that require each unary resource is close to 30. The two
other resources are volumetric resources with capacity greater than one.

There are two optimization criteria, viz., minimization of the end times of
two specific activities, one for each project. As the projects rely on common
resources, these two optimization criteria are conflicting. As a result, the
final user wants to impose upper bounds on the two criteria, and wants the
system to tell whether there exists a solution satisfying these upper bounds.

Table 2 reports the CPU times, in seconds, obtained for different values
of the upper bounds of the two criteria. We compared two algorithms, one
using arc-B-consistency and one using the edge-finder of Nuijten [1994]. If
an algorithm is incapable of solving an instance within one hour of CPU
time, that is reported by "-". Solving an instance means either finding a
solution or proving that there is no solution. Numbers in bold correspond to
the upper bounds for which there is no solution. Table 2 clearly shows that
the edge-finder strongly outperforms arc-B-consistency.

10

Algorithm 120 125 130 134 135 136 140
120 arc-B-consistency

edge-finder
6
1

39
1

131
1

805
1

1188
31

621
1

1
1

125 arc-B-consistency
edge-finder

40
1

387
1

1771
1 1 50 1

1
2

130 arc-B-consistency
edge-finder

100
1

1172
1 1 1 117 2

1
2

134 arc-B-consistency
edge-finder

276
1 1 1 1 215 2

1
2

135 arc-B-consistency
edge-finder

356
10 58 171 265 299 113

1
2

136 arc-B-consistency
edge-finder

247
1 1 2 2 2 2

1
2

140 arc-B-consistency
edge-finder

1

1

1
1

1
1

1
2

1
2

1
2

1
2

Table 2: Results on an industrial project scheduling problem

6 Conclusions

We have shown how to combine operations research and artificial intelligence,
in particular constraint programming, in a way that preserves the best of
both, i.e., we preserved the efficiency provided by operations research and
the generality of approach offered by constraint programming. We have
shown that a good performance can be obtained on such a classical scheduling
problem as the JSSP as well as on generalizations thereof, and on real-life
scheduling problems as described in Section 5.3. In short, we think that in
ILOG SCHEDULE we have found a powerful combination of techniques that
allows us to tackle a broad range of practical scheduling problems in an
efficient wa}'.

References

APPLEGATE, D., AND W. COOK [1991], A computational study of the job-shop
scheduling problem, ORSA Journal on Computing 3, 149-156.

BAKER, K.R. [1974], Introduction to Sequencing and Scheduling, Wiley & Sons.
BAPTISTE, P. [1994], Constraint-based scheduling: Two extensions, Master's

thesis, University of Strathclyde.

11

BAPTISTE, P., AND C. LE PAPE [1995], Disjunctive constraints for manufactur-
ing scheduling: Principles and extensions, to appear.

CARLIER, J., AND E. PINSON [1990], A practical use of Jackson's preemptive
schedule for solving the job shop problem, Annals of Operations Research 26.
269-287.

CARLIER, J.. AND E. PINSON [1994], Adjustment of heads and tails for the job-
shop problem, European Journal of Operational Research 78. 146-161.

COFFMAN, JR., E.G. (ed.) [1976], Computer & Job Shop Scheduling Theory, Wi-
ley, New York.

FORD, JR., L.R. [1956], Network Flow Theory, Technical report, Rand Corpora-
tion.

FRENCH, S. [1982], Sequencing and Scheduling: An Introduction to the Mathe-
matics of the Job-Shop, Wiley & Sons.

GAREY. M.R., AND D.S. JOHNSON [1979], Computers and Intractability; A
Guide to the Theory of NP-completeness, W.H. Freeman and Company.
New York.

GONDRAN, M., AND M. MINOUX [1984], Graphs and Algorithms, John Wiley
and Sons.

LE PAPE, C. [1988], Des systemes d'ordonnancement flexibles et opportunistes,
Ph.D. thesis, University Paris XI, in French.

LE PAPE, C. [1994], Implementation of resource constraints in HOG SCHEDULE:

A library for the development of constraint-based scheduling systems. Intel-
ligent Systems Engineering 3, 55-66.

LHOMME, O. [1993], Consistency techniques for numeric CSPs, Proc. 13th Inter-
national Joint Conference on Artificial Intelligence.

NOWICKI, E.. AND C. SMUTNICKI [1993], A Fast Taboo Search Algorithm for the
Job Shop Problem, Preprint}' nr. 8/93, Instytut Cybernetyki Technicznej,
Politechnicki Wroclawskiej, Poland.

NUUTEN, W.P.M., AND E.H.L. AARTS [1994], Constraint satisfaction for multi-
ple capacitated job shop scheduling, in: A. Colin (ed.), Proc. 11th European
Conference on Artificial Intelligence, John Wiley & Sons, 635-639.

NuiJTEN, W.P.M. [1994], Time and Resource Constrained Scheduling: A Con-
straint Satisfaction Approach, Ph.D. thesis, Eindhoven University of Tech-
nology.

PUGET, J.-F. [1994], A C++ Implementation of CLP, Technical Report 94-01,
ILOG, S.A., GentiUy, France.

VAESSENS, R.J.M., E.H.L. AARTS, AND J.K. LENSTRA [1994], Job Shop Sched-
uling by Local Search, COSOR Memorandum 94-05, Eindhoven University
of Technology.

12

Position Paper for
First International Joint Workshop on Artificial

Intelligence and Operations Research
Thomas Dean

Department of Computer Science
Brown University

115 Waterman Street
Providence, RI 02906, USA

Phone: (401) 863-7600
Fax: (401) 863-7657

Email: tld@cs.brown.edu

1 Introduction

My work over the last ten years has been concerned with automated planning, learning sys-
tem dynamics, adaptive control, and Markov decision processes. The focus is on dynamical
systems that can be represented as discrete-time, discrete-space, stochastic processes. My
current emphasis is on solving problems posed as Markov decision process with very large
state spaces.

My students and I have developed methods whereby the underlying dynamical systems
can be efficiently represented and have designed and analyzed algorithms for efficiently solv-
ing restricted classes of problems. We have worked with computer scientists, operations
researchers, and applied mathematicians in seeking better solution methods, e.g., Craig
Boutilier and Marty Puterman at the University of British Columbia, Moises Goldszmidt at
Rockwell Science Center, Leslie Kaelbling and Harold Kushner at Brown University, Stuart
Russell at the University of California at Berkeley, Michael Wellman at the University of
Michigan, and Steve Hanks at the University of Washington. Together we are building a
body of shared knowledge from diverse fields aimed at solving an important class of decision
problems.

Mike Wellman and I attempted a synthesis of ideas from operations research (OR) and
artificial intelligence (AI) that pertain to planning and control under uncertainty (Planning
and Control, Morgan-Kaufmann, 1991). Stuart Russell, Keiji Kanazawa, Daphne Koller
(all from the University of California at Berkeley) are working on a text that focuses on the
connection between Markov decision processes and decision-theoretic methods for automated
planning. In the following, I provide a high-level perspective on our work, mention specific
research projects, suggest some concrete proposals for participation in the workshop, and
provide pointers to abstracts and postscript of recent papers available on the world wide
web.

2 Perspective

Logic provides a very general representation language and, at least for the propositional
case, solving boolean satisfiability (SAT) problems provides the corresponding general class
of computational problems. One property of such problems is that the inputs (boolean
formula) and outputs (satisfying assignments) can be compactly represented. The inter-
esting computational issues revolves around searching the exponential number of possible
assignments to find a satisfying one.

Markov decision processes (MDPs) provide general semantic foundations for a large class
of automated planning problems. MDPs can be represented as either SAT problems, in the
case of deterministic processes based on state-space operators, or as linear programs (LPs),
in the case of stochastic variants with separable value functions. However, time (dynam-
ics) provides additional structure that can. in many cases, serve to expedite computations.
Dynamic programming is one example of a general method that allows us to exploit the
structure in dynamics and separable value.

As in the case SAT problems, we are interested in classes of MDPs in which the problem
descriptions (cost and state-transition functions) and solutions (functions mapping states to
actions) can be encoded in space some low-order polynomial of the number of state variables.1

Not too surprisingly, even this restricted class of problems includes some vary hard problems.
Traditionally, researchers in OR have been interested in proving convergence to an opti-

mal solution for various sorts of iterative algorithms. Convergence in the limit, while a very
nice property, is neither necessary nor sufficient for good performance. Researchers in AI and
computer science are interested in proving deterministic performance criteria of the form,
this algorithm will return a solution whose value is within (1 — e) of the optimal solution in
time polynomial in the size of the problem specification and 1/e, and probabilistic perfor-
mance criteria of the form, with probability 1 — 6, this algorithm will return a solution whose
value is within (1 — e) of the optimal solution in time polynomial in the size of the problem
specification, 1/e, and l/S. An interesting question is for what subclasses of problems do
algorithms satisfying the above criteria exist and how might we specify such subclasses in a
mathematically concise manner.

The machinery to state and answer such questions is now becoming available. We have
developed approximation algorithms and proved such performance guarantees for a range
of system identification problems and are now turning our attention to Markov decision
processes. There is now a chance to revisit some of the classic problems of OR and provide
better algorithms and more appropriate forms of analysis.

An effective study of these questions will require the collaboration of researchers in both
AI and OR and initial collaborations have begun. On the OR side, researchers like Dim-
itri Bertsekas. George Dantzig, Harold Kushner, Martin Puterman, and Sheldon Ross are
beginning to take an interest in AI problems and techniques. Issues at the frontier of au-
tomated planning and computational learning theory are being explored by researchers in
OR and computer science including Christos Papadimitriou, Michael Luby, and Manfred
Warmuth. We have contributed to this research both in terms of concrete results both theo-

*In the case of some AI planning problems, state variables are often called fluents and correspond to
propositions whose truth values change over time.

retical and empirical and in terms of consciousness raising and promoting cross-disciplinary
collaborations.

3 Recent Research Focus

Here are three .basic areas of research in which my students and I are active and we believe
are ripe for concerted cross-disciplinary effort.

1. Designing approximation algorithms with provable performance guarantees. In partic-
ular, we believe that recent work in competitive algorithm analysis and computational
learning theory will allow us to design stopping criteria for algorithms such as value
iteration and modified policy iteration that are guaranteed to generate a solution that
is within e of the optimum with probability 1 — 8 in time that is some low-order poly-
nomial of the size of the problem, 1/e, and 1/8.

2. We are developing new aggregation algorithms for computing optimal policies that
operate on state spaces that cannot be explicitly enumerated (the state space is of
size 0(2M) for some reasonably large M) and yet have problem representations and
solutions that can be stored in 0(M).

3. We are working on decomposition algorithms for solving MDPs with very large state
spaces using iterative approximation methods that can be shown to converge to opti-
mal solutions. These iterative methods are motivated by heuristic divide-and-conquer
techniques in AI, but the iterative schemes can be justified in terms of shadow prices
(Lagrange multipliers) and Dantzig-Wolfe decomposition methods for solving large lin-
ear programs.

4 Participation

I would be happy to give a tutorial on Markov decision processes and decision theoretic
planning. I have given similar tutorials to a wide range of audiences and would find it
relatively easy to tailor my lecture to a mixed AI and OR audience. Relevant postscript
files2 include

• DeanSIPRAI-94.tutorial.ps,

• DeanSIPRAI-94.slides.one.ps, and

• DeanSIPRAI-94.slides.two.ps.

I would also be willing to give a presentation concerning the use of decomposition schemes
for solving very large Markov decision processes with quick introductions to factored state-
space representations, solving MDPs using linear and dynamic programming, and Dantzig-
Wolfe decomposition theory. Relevant postscript files include,

2 All of the postscript files mentioned in this position paper are found in
ftp://cs.brown.edU/u/tld/postscript/.

• DeaJiKaelblingKirmanandNicholsonAIJ-95.ps, and

• DeanandLinIJCAI-95.submitted.ps.

5 Recent Papers

On the web,3 you will find a dozen or so papers and abstracts including the following. Three
recent papers (and their abstracts) submitted to IJCAI on MDPs and automated planning.
One AAAI-1993 paper and one paper to appear in Artificial Intelligence on aggregation
methods for solving MDPs. A tutorial and slides on Markov decision processes presented at
the 1994 Conference on Uncertainty in AI and at the 1993 Summer Institute on Probability
and AI. Information on a 1991 book entitled Planning and Control (with Mike Wellman)
that uses MDPs and notions from control theory to present a unified view of planning under
uncertainty

URL: http://www.cs.brown.edu/people/tld/home.html

Robust Encodings of OR Problems for Genetic Algorithms

James C. Bean, Atidel Hadj-Alouane and Bryan Norman

University of Michigan

Department of Industrial and Operations Engineering

Ann Arbor, MI 48109-2117

January 24, 1995

Genetic algorithms were developed in computer science in the mid 60:s by Holland [1975].

They seek to breed good solutions to complex problems by a paradigm that mimics evolution.

A population of solutions is constructed. Solutions in the population mate and bear offspring

solutions in the next generation. These "reproduction" and "crossover" operations are programmed

to replicate the paradigm of "survival-of-the-fittest." Over many generations the solutions in the

population improve until the best of the population is (hopefully) near optimal. For background

on traditional genetic algorithms the reader is referred to Holland [1975] and Goldberg [1989].

Adopting the basic terminology of genetics: a chromosome is an encoding of a solution and is

a vector in 3?"; a gene is an element of the chromosome (vector); an allele is a value taken by that

element. For example, x £ 3i9 might be a chromosome, 14 one of its genes, and if 14 = 3.5 then

the fourth gene has allele 3.5.

Crossover is the process by which elements of two parent chromosomes recombine to create

a new offspring chromosome. The traditional crossover operator is the one-point crossover. To

illustrate, consider a simple genetic algorithm approach to the single machine sequencing problem.

A candidate solution to a single machine sequencing problem is an ordering of the n jobs. Two

such orderings for five jobs are 1 —► 2 —»3—> 4 -+5 and 5—> 3 -► 4 —► 2 -+ 1. The most

direct chromosomal representation of such sequences axe the permutations x = (1,2,3,4,5) and

x' = (5,3,4,2,1). A one-point crossover operation would cleave each permutation at some point,,

say after the second job in the sequence, and exchange leading segments. Executing that process

on the example schedules gives 5—»3-+3—»4—► 5 and 1—»2.—f4—>2—>1 (see Figure 1).

Neither is a valid sequence. Genetic algorithms have been slow to gain acceptance for operations

research problems since crossing over two feasible solutions does not. in many cases, result in a

feasible solution as an offspring.

FIGURE 1: One-point Crossover

Many authors have developed problem specific representations of solutions for scheduling

problems that overcome the offspring feasibility difficulty. Genetic algorithms have been applied

to scheduling problems by Syswerda [1991]; Kanet and Sridharan [1991]; Biegal and Davern [1990],

Storer et al. [1992a, 1992b], Herrmann and Lee [1993], Lee and Piramuthu [1994] and others.

Two continuing drawbacks have been the need for specialized representations for each problem

variation and the experimentation necessary to set parameters in each representation. Our work

concentrates on robust methods for encoding operations research problems so that general use

crossover operators lead to feasible solutions. Two approaches have been developed: random keys

and multiple-choice. We mention both here, but concentrate on the latter.

Random Keys.(Bean [1994], Norman and Bean [1994]) uses a paradigm similar to that of a

random variable. A random variable is a function from the outcome space of a real stochastic

phenomenon to the real line. Many stochastic phenomena map, by various random variables, to

the same distribution in 3J. For example, tossing a coin can be represented by the random variable

x where x(H) = l,x(T) = 0, with a given probability, p, of heads. A machine that can be up or

down can be modeled by the random variable y where y(U) = l,y(D) = 0 with a given probability,

p. of the machine being up. Both phenomena reduce to the Bernoulli distribution. Now, we can

analyze the Bernoulli distribution for expectation, variance, etc. and, in effect, analyze many real

stochastic phenomena.

We wish to establish a space, C„ analogous to 3£ for a random variable, such that the feasible

regions of many operations research problems correspond to C. If a single genetic algorithm is

developed to search C efficiently, we can solve a multitude of operations research problems with

this algorithm. For each problem we need only redefine the mapping between the original space

and the simpler random keys space. See Figure 2 for a graphical depiction of the process.

FIGURE 2: Random Keys and Solution Spaces

Random keys space ~ [0,1] Solution space

The idea of a surrogate space is not new, having been used for years by Syswerda XXX. Storer

et al. [1992a,1992b], Herrmann and Lee [1993] and others. The unique facet of random keys is

that the same space is used for many problems allowing a stable genetic algorithm to be used for

each of those problems.

The random keys approach is most effective on sequencing type problems such as schedul-

ing and vehicle routing. It has also been used on resource allocation and quadratic assignment

problems. An alternative approach, the multiple-choice encoding, is designed for general integer

programs.

The difficulty with constructing a genetic algorithm for integer programming is the general

constraint set. Given two feasible solutions as parents, it is difficult to guarantee that the offspring

resulting from a crossover are also feasible. A common approach to this problem is the use of

penalty functions (Michalewicz and Janikow [1994]) to relax troublesome constraints and penalize

the objective for violating them. Approaches in the literature have had limited success and may

result in substantial solution error due to the relaxation.

The multiple-choice encoding is based on a nonlinear penalty function that results in a strong

dual (Hadj-Alouane and Bean [1992] and Bean and Hadj-Alouane [1992]). That is, parameters for

the penalty function exist such that the relaxed problem solves the original problem exactly. Given

a fixed parameter vector, we solve a nonlinear integer program with a genetic algorithm. To find

the appropriate parameter vector, a search of the parameter space is carried out with a simplistic,

subgradient-type algorithm. The combination is a primal-dual genetic algorithm for general integer

programming.

Computational tests have been quite successful for a range of problems including multiple-

choice integer programs, general linear integer program's, nonconvex integer programs and assembly

line balancing problems.

As an example, consider the multiple-choice integer program:

min ex

subject to : Ax > b

(MC IP)
2_,Xij = 1. i = 1.2.m

x > 0, integer.
12 Define the penalty function p\(x) = ^2k At[min(0, Ak.x — 6jt)] , where k indexes the constraints

Ax > b. Then the relaxed problem is

min ex + p\(x)
n;

subject to : Y", x>j = ^- i = l-2,....m (PP\)

x > 0, integer.

The key results are:

Result: (Weak Duality) For all A > 0, v(PPx) < v(MCIP).

Result: For a given A > 0, if x is optimal to (PP\) and Ax > b. then x is optimal to (MCIP).

Further, for a given A > 0, if x is e-optimal to (PP\) and Ax > b. then x is e-optimal to

(MCIP).

Result: (Strong Duality) If (MCIP) is feasible, then there exists A such that, for all A > A, there

exists x G S\ such that p\(x) = 0 and x is optimal to (MCIP). where 5^ is the set of optimal

solutions to (PP\).

This result assures us that there exists a multiplier that returns an optimal solution to the

original problem. Further, the proof guides us in finding that multiplier vector.

The relaxed problem, PP\, is solved heuristically by a new genetic algorithm designed to

exploit the multiple-choice structure. Specifically, solutions of (PP\) are represented compactly in

a manner that guarantees closure of the feasible region under the crossover operator. That is, if

two parents are feasible, then the offspring is feasible.

This penalty function has appeared in the continuous nonlinear optimization literature. There,

strong duality requires an assumption of convexity. In the integer case we get the strong result

without convexity.

Traditional genetic algorithms use a roulette wheel approach to parent selection. Parents are

chosen with likelihood proportional to their objective function value. Advantages are mimicry of

biological genetics and an obvious tendency toward survival-of-the-fit test. The disadvantage is that

the best solution in the population is not monotonically improving.

In the multiple-choice genetic algorithm we use an elitist strategy followed by random parent

selection. The best few members of the population are automatically copied to the next generation.

Parents are then chosen randomly from the entire old population. Advantages are that the best

elements of the population are monotonically improving and that the random parent selection

leads to certain conditional independencies when doing a probabilistic analysis of the algorithm.

The disadvantage is the lack of biological justification. Both elitist strategies and random parent

selection have appeared in the genetic algorithm literature (Goldberg [1989]).

Traditional 1-point and related crossovers are described above. We employ a Bernoulli crossover

in which realizations from independent Bernoulli random variables choose which parent contributes

the allele for each gene. This approach is called ■parametrized uniform crossover in Spears and De-

Jong [1991].

Traditional mutation involves a low probability random alteration of an allele. We employ

a massive mutation operation that we call immigration. In this case we do not alter individual

genes, but generate complete random individuals in each generation. Their genetic material is then

interspersed in the genetic pool in future generations. Immigration serves the same purposes as

mutation: replacing lost genetic material and resisting premature convergence. To its advantage,

it is more easily analyzed probabilistically.

Integer programs are solved by a primal-dual process in which primal variables (x) are evolved

with genetic algorithms and dual variables (A) are evolved by a simplistic subgradient search. These

searches are carried out harmoniously resulting in convergence to optimal primal and dual solutions.

We have shown that:

Result: (Convergence) The genetic algorithm described above converges in probability to an

optimal solution.

The algorithm was tested on problems designed to be very difficult. Specifically, they have

many optimal solutions so that branch-and-bound algorithms get little guidance from bounds. To

summarize the results, over 10 massively dual degenerate, 5000 variable multiple-choice integer

programming problems (10 random seeds each) the GA averages 168 generations and 147 CPU

seconds on an IBM RISC/6000-730 to get within 5% of the linear relaxation bound. When the

IBM package OSL is run as a heuristic, stopping with the same criteria as the GA, it averages 319

CPU seconds on the same machine. To prove optimality, OSL could not finish any problem within

20 hours. Hence, the GA makes a substantive contribution to our ability to solve large, complex

integer programs.

In Hadj-Alouane, Bean and Murty [1993] we generalize to a specific nonconvex integer pro-

gramming formulation of a task allocation problem arising in automotive design. Real problems

of 480 variables were solved in an average of 310 seconds on an IBM RS/6000-320H.

The strong duality theory (Hadj-Alouane and Bean [1992], Bean and Hadj-Alouane [1992])

has substantial promise beyond the genetic algorithm used to date. The dualizing of the general

constraints as described above is independent of the solution approach used. It might also be

combined with traditional operations research approaches such as branch-and-bound or dynamic

programming; and AI techniques such as simulated annealing and tabu search.

BIBLIOGRAPHY

Bean. J. [1994], "Genetics and Random Keys for Sequencing and Optimization," ORSA Journal
on Computing, Vol. 6, pp. 154-160.

Bean, J. and A. Hadj-Alouane [1992]. "A Dual Genetic Algorithm for Bounded Integer Programs,"
Technical Report 92-53, Dept. of Ind. and Oper. Eng., University of Michigan. Ann Arbor,
MI, 48109. To appear in R.A.I.R.O.-R.O.

Biegal, J. and J. Davern [1990], ''Genetic Algorithms and Job Shop Scheduling," Computers and
Industrial Engineering, Vol. 19, pp. 81-91.

Goldberg, D. E. [1989], Genetic Algorithms in Search Optimization and Machine Learn-
ing, Addison Wesley.

Goldberg, D. E. [1991], "Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking," Com-
plex Systems, Vol. 5. 139-167.

Hadj-Alouane. A. and J. Bean [1992]. "A Genetic Algorithm for the Multiple-Choice Integer Pro-
gram," Technical Report 92-50, Dept. of Ind. and Oper. Eng., University of Michigan. Ann
Arbor. MI. 48109. To appear in Operations Research.

Hadj-Alouane. A.. J. Bean and K. Murty [1993], "A Hybrid Genetic/Optimization Algorithm for a
Task Allocation Problem," Technical Report 93-30, Department of Industrial and Operations
Engineering, University of Michigan, Ann Arbor, MI, 48109-2117.

Herrmann, J. and C. Lee [1993], Global Job Shop Scheduling for Semiconductor Test Operations,"
ORSA/TIMS Phoenix, November, 1993.

Holland, J. H. [1975], Adaptation in Natural and Artificial Systems, University of Michigan
Press.

Kanet, J. J. and V. Sridharan [1991], "PROGENITOR: A Genetic Algorithm for Production
Scheduling." Wirtschafts Informatik, Vol. 33, pp. 332-336.

Lee, C. and S. Piramuthu [1994]. "Global Job Shop Scheduling with Genetic Algorithm and Ma-
chine Learning," ORSA/TIMS Detroit, October, 1994.

Michalewicz, Z. and C. Janikow [1994]. "Handling Constraints in Genetic Algorithms,"Proceedings
of the Fourth International Conference on Genetic Algorithms, pp. 151-157.

Norman, B. and J. Bean, [1994], "Random Keys Genetic Algorithm for Job Shop Scheduling,"
Technical Report 94-5, Department of Industrial and Operations Engineering, University of
Michigan, Ann Arbor, MI, 48109.

Spears, W. M. and K. A. De Jong [1991], "On the Virtues of Parameterized Uniform Crossover,"
Proc. of the Fourth International Conference on Genetic Algorithms, pp. 230-236.

Storer, R. H., S. D. Wu. and R. Vaccari [1992a], "New Search Spaces for Sequencing Problems
With Application to Job Shop Scheduling," Management Science, Vol. 38, No. 10, pp.
1495-1509.

Storer, R. H., S. D. Wu, and I. Park [1992b], "Genetic Algorithms in Problem Space for Sequencing
Problems," Proceedings of a Joint US-German Conference on Operations Research
in Production Planning and Control, pp. 584-597.

Syswerda, G. [1991], "Schedule Optimization Using Genetic Algorithms," in Handbook of Ge-
netic Algorithms, L. Davis (ed), Van Nostrand, pp. 332-349.

Joint Workshop on Artificial Intelligence and Operations Research
Timberline, Oregon, June 6-10, 1995

Interdependence of Methods and Representations
in Design of Software for Combinatorial Optimization

Collette Coullard
Robert Fourer

Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, Illinois 60208-3119

Practical algorithmic methods for combinatorial optimization problems cannot
be considered in isolation from the representations that people employ in commu-
nicating these problems to computer systems. Different representations define dif-
ferent problem classes, for which quite distinct types of methods are appropriate.'
Conversely, different methods have different ranges of applicability, which have mo-
tivated a diverse variety of representations.

This strong interdependence of method and representation in combinatorial op-
timization is quite the opposite of what one finds in linear or continuous nonlinear
programming, where a single standard form permits communication between nu-
merous methods and representations that have been independently developed. One
consequence has been the tendency of separate research communities — such as "AI"
and "OR" — to address optimization in separate ways, through different preferred
combinations of representations and methods. Another consequence is alack of good
general purpose combinatorial optimization software, as one can see by examining
the many ads for optimization systems in a typical issue of OR/MS Today.

In this presentation, we survey three representations popularly applied in combi-
natorial optimization — algebraic modeling languages, constraint logic programming
languages, and network diagrams — and describe the kinds of optimization methods
most commonly associated with these representations. Each pair of representations
is then considered, to show how each one has been advantageous and how its advan-
tages have begun to influence the design of the other. Our current research projects
are described in conjunction with several of these comparisons.

Algebraic modeling languages. We take it for granted that virtually any problem
of optimizing a linear function of given decision variables, subject to linear equations
and inequalities in the variables, can be solved by one of just a few general-purpose
algorithms. This remarkable property has made possible the development of com-
prehensive modeling languages for the support of linear programming. The user of
such a language controls the structure of data and variables, which may be organized
into any convenient combination of lists, tables, and more complex entities.

Our particular concern is with algebraic modeling languages, which have ex-
hibited the greatest potential for extension beyond linear programming. Algebraic
languages are based on familiar mathematical terminology for functions and com-
parisons, so that one may for example say:

minimize total_cost:
sum {i in ORIG, j in DEST, p in PROD} cost[i,j,p] * Trans[i,j,p];

subject to Supply {i in ORIG, p in PROD}:
sum -Cj in DEST} TransCi.j.p] = supply[i,p3;

By admitting nonlinear expressions and integrality restrictions on variables, the
languages of AIMMS [3], AMPL [12, 13], GAMS [6, 7], and others can also describe
problems of smooth nonlinear programming and of integer programming — two
areas for which general-purpose algorithms have also become increasingly powerful.
The AMPL language has been further extended to handle piecewise-linearities [11],
while both AIMMS and AMPL allow network flow optimization problems to be
formulated in terms of nodes and arcs [3, 11].

Constraint logic programming languages. Languages designed for the purpose
of describing logical relationships can be extended in a natural way to encompass
combinatorial optimization. Lauriere's ALICE [27], the most notable early work in
this area, describes an optimization problem in terms of finding a best function of
a certain kind; constraints are described through a variety of algebraic and logical
forms. The work of Van Hentenryck and others in the context of the CHIP project
[10, 36, 37], based on the Prolog language [35], has more recently attracted atten-
tion. Other examples are Colmerauer's Prolog III [8], and McAloon and Tretkoff 's
2LP [29].

Problems expressed in constraint logic programming languages are typically
solved by sophisticated general-purpose search methods, similar in nature to the
methods that have long been employed in Prolog systems. Successful optimization
requires that these methods be enhanced by a variety of backtracking, lookahead,
and other strategies that can be controlled by the modeler or that can take advantage
of problem-specific information that the modeler supplies.

Network-based representations. One of the largest and best-known classes of
combinatorial optimization problems are those that can be posed in terms of net-
works: nodes, arcs. connecting nodes, and data associated with arcs and nodes.
Glover, Klingman and Phillips have formalized this representation, introducing
the term netform to denote a general network data structure together with con-
ventions for representing instances of the structure as network diagrams [15, 16].
Steiger, Sharda and Leclaire's GIN [33, 34] implements netforms within a model-
management system for minimum-cost network flow problems; other examples in-
clude Ogryczak, Studziriski and Zorychta's DINAS/EDINET [31, 32], McBride's
NETSYS [30], Jones's NETWORKS [20, 21, 22, 23], and Kendrick's PTS [26].

The bulk of research in network optimization has proceeded by identifying a
problem, devising an algorithm for that problem, and providing performance guar-
antees for the algorithm; the state of the art is well described for network flow
problems by Ahuja, Magnanti, and Orlin [1], and for a variety of other network-
based problems by Cook, Cunningham, Pulleyblank, and Schrijver [9]. This work
has produced literally hundreds of good but narrowly targeted algorithms that have
only very limited application, while modelers and analysts continue to be confronted
with new network problems for which efficient and effective methods are not yet
known. Certain heuristic methods do offer broader applicability, but they tend to

be of uncertain effectiveness; the most widely applicable approaches, such as genetic
algorithms [28], simulated annealing [38] and tabu search [14], are unfortunately
often very slow, and may produce no useful bounds on the quality of the solution
returned.

Algebraic vs. constraint logic languages. For combinatorial optimization prob-
lems that are directly concerned with numerical decision variables, algebraic mod-
eling languages offer a natural form of expression based on familiar mathematical
notation, while logic programming languages often have the disadvantage of re-
quiring a substantial re-thinking and translation. For other kinds of combinatorial
optimization problems, however, the conversion to decision variables can be awk-
ward, with the result that the logic programming approach has advantages both in
naturalness of expression and in speed of solution.

The expressiveness of algebraic modeling languages might be extended in a num-
ber of ways by adding logical functions and operators and by extending the contexts
in which they may be used. By merely allowing such operators as or and if . . .
then . . . else to be applied more generally to variables, algebraic languages can
naturally express a great variety of combinatorial constraints that would otherwise
require the introduction of formulation tricks involving zero-one variables. The ma-
jor obstacle to such extensions has been a lack of computational methods sufficiently
general to address the great variety of combinatorial/algebraic problems that can
result. Ideas from constraint logic programming methods may help to overcome
this obstacle, and already there has been considerable interest in the relationship
between various logic programming search strategies and established branch-and-
bound strategies for integer programming [18, 19].

We have investigated another kind of extension to algebraic modeling languages,
in which the optimization may be accomplished by selection of a subset or subse-
quence from a certain decision set (of cities, machines, bins, or whatever) in contrast
to the assignment of values to decision variables [4]. Here again our approach has
parallels to methods employed for constraint logic programming. We start with a
general subset or subsequence enumeration method, and add a rich variety of direc-
tives by which the modeler can assist the search. Expressions within the directives
can refer to problem-specific data and to aspects of the current state of the search.

The expressiveness of constraint logic programming languages might be increased
in an analogous way, by adding some constructs better suited to the numerical-
valued variables of algebraic modeling languages. Here the obstacle is likely to be of
an opposite nature: the lack of connections between the logic programming systems
and fast, robust solvers for such things as LP subproblems.

As languages of both kinds begin to overcome the obstacles we mention, they
will inevitably gain more features in common. Eventually the distinction between
them may not seem so great.

Algebraic vs. network-based representations. Although there are many network
flow models that can be expressed as linear programs, the "flow in equals flow out"
balance constraints at the nodes remain awkward to express in the customary terms
of an algebraic modeling language. This was our motivation for including node and
arc declarations to the AMPL language [11].

Many other important network problems give algebraic modeling languages even

more trouble. Their LP formulations may grow exponentially in the number of
variables and constraints, while their integer programming formulations may involve
constraints that have little obvious relation to the original problem. The simple
minimum spanning tree problem, which admits very fast specialized algorithms, is
a notorious example of this kind. To handle these cases in a natural way. algebraic
languages will require more ambitious extensions. As an example, the hierarchical
sets proposed by Bisschop and Kuip [5] could help with network problems, as they
provide a natural way to deal with tree structures.

Algebraic and network representations are fundamentally distinct, however, and
so are ultimately more likely to complement each other than to adopt each other's
features. Jones and D'Souza [24] describe how a system based on manipulation of
graphs for network flow modeling could be extended to interface with a system for
algebraic modeling. MIMI/G, although its model representations are not algebraic,
offers another idea of what might be possible; the modeler can define in great detail
the appearance of a graphical network representation of a model's data and results;
the network is "live'' in that changing the graph on the screen will change the values
in the tables. A more general possibility, explored by several investigators [2, 17, 25].
is for the algebraic problem statement and the network diagram to become just two
of many views of a model between which the user can switch as desired.

Logic-based vs. network-based systems. Although these systems address some of
the same problems, they tend to take opposing approaches toward providing opti-
mization methods to the modeler. Each might benefit by considering an approach
that somewhat more like the other's.

Reflecting the general state of network optimization research cited previously,
network-based systems have tended to rely on a toolkit of narrowly targeted meth-
ods. The user chooses from a menu of built-in models, constructs a network to be
interpreted according to the chosen model, and then finally chooses from a prede-
termined list of methods that are applicable to solve the resulting problem instance.
Such an arrangement has been highly successful for statistical packages, but has not
been as effective in network optimization — perhaps because the range of models
and methods is so much greater. Rather than continuing to expand their toolkits,
designers of network-based optimization systems may benefit by considering some
of the more general-purpose search methods employed in constraint logic program-
ming; these methods may suggest approaches for putting network toolkits to work
in a broader way.

Reflecting their origins in logic programming and artificial intelligence, logic-
based optimization systems tend to adopt heuristic search approaches that are very
widely applicable. By virtue of their generality, however, these search methods do
not typically incorporate much specific knowledge about networks. They would not
know, for example, that there are very fast methods for maximum flow or minimum
spanning tree, which might be used in determining good bounds or feasible solutions
as part of a search strategy. Just as network-based systems may need to become
less problem-specific, logic-based systems may have to take a more problem-specific
view to improve their effectiveness within an area such as network optimization.
Some recent investigations pertaining to Horn clauses and related logical structures
may prove useful in this regard.

References

[1] R.K. AHUJA, T.L. MAGNANTI and J.B. ORLIK, Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, Englewood Cliffs, NJ (1993).

[2] D. BALDWIN, The Development and Architecture of DOVE: A Multiview Viewpoint.
Proceedings of ISDSS Conference, Austin, TX (1990).

[3] J.J. BISSCHOP and R. ENTRIKEN, AIMMS: The Modeling System. Paragon Decision
Technology, Haarlem, The Netherlands (1993).

[4] J.J. BISSCHOP and R. FOURER, New Constructs for the Description of Combinato-
rial Optimization Problems in Algebraic Modeling Languages. Memorandum No. 901,
Faculty of Applied Mathematics, University of Twente, The Netherlands (1990, revised
1994); forthcoming in Computational Optimization and Applications.

[5] J.J. BISSCHOP and C.A.C. KuiP, Hierarchical Sets in Mathematical Programming
Modeling Languages. Computational Optimization and Applications 1:4 (1992).

[6] J.J. BISSCHOP and A. MEERAUS, On the Development of a General Algebraic Mod-
eling System in a Strategic Planning Environment. Mathematical Programming Study
20 (1982) 1-29.

[7] A. BROOKE, D. KENDRICK and A. MEERAUS, GAMS: A User's Guide, Release 2.25.
Boyd & Fraser/The Scientific Press, Danvers, MA (1992).

[8] A. COLMERAUER, An Introduction to Prolog III. Communications of the ACM 33
(1990) 69-90.

[9] W. COOK, W. CUNNINGHAM-, W. PULLEYBLANK and A. SCHRIJVER, Combinatorial
Optimization. Unpublished manuscript (1994).

10] M. DINCBAS, H. SIMONIS and P. VAN HENTENRYCK, Solving Large Combinatorial
Problems in Logic Programming. Journal of Logic Programming 8 (1990) 75-93.

11] R. FOURER and D.M. GAY, Expressing Special Structures in an Algebraic Modeling
Language for Mathematical Programming. Technical Report 91-01, Department of In-
dustrial Engineering and Management Sciences, Northwestern University, Evanston, IL
(1991); forthcoming in ORSA Journal on Computing.

12] R. FOURER, D.M. GAY and B.W. KERNIGHAN, A Modeling Language for Mathe-
matical Programming. Management Science 36 (1990) 519-554.

13] R. FOURER, D.M. GAY and B.W. KERNIGHAN, AMPL: A Modeling Language for
Mathematical Programming. Boyd k Fraser/The Scientific Press, Danvers. MA (1992).

14] F. GLOVER, Tabu Search - Part II. ORSA Journal on Computing 2 (1990) 4-32.

15] F. GLOVER, D. KLINGMAN and N.V. PHILLIPS, Netform Modeling and Applications.
Interfaces 20:4 (1990) 7-27.

16] F. GLOVER, D. KLINGMAN and N.V. PHILLIPS, Network Models in Optimization and
Their Applications in Practice. John Wiley & Sons, New York (1992).

17] H.J. GREENBERG and F.H. MURPHY, Views of Mathematical Programming Models
and their Instances. Technical Report, Mathematics Department, University of Col-
orado at Denver, CO (1992); forthcoming in Decision Support Systems.

18] J.N. HOOKER, Logic-Based Methods for Optimization. Operations Research Society
of America Computer Science Technical Section Newsletter 15:2 (1994) 4-11.

19] J.N. HOOKER, H. YAN, I.E. GROSSMANN and R. RAMAN, Logic Cuts for Processing
Networks with Fixed Costs. Computers and Operations Research 21 (1994) 265-279.

[20] C.V. JONES, An Introduction to Graph-Based Modeling Systems, Part I: Overview.
ORSA Journal on Computing 2 (1990) 136-151.

[21] C.V. JONES, An Introduction to Graph-Based Modeling Systems, Part II: Graph
Grammars and the Implementation. ORSA Journal on Computing 3 (1991) 180-206.

[22] C.V. JONES, Attributed Graphs, Graph-Grammars and Structured Modeling. Annals
of Operations Research 38 (1992) 281-324.

[23] C.V. JONES, An Integrated Modeling Environment Based on Attributed Graphs and
Graph-Grammars. Decision Support Systems 10 (1993) 255-275.

[24] C.V. JONES and K. D'SOUZA, Graph-Grammars for Minimum Cost Network Flow
Modeling. Technical Report, Faculty of Business Administration, Simon Fräser Uni-
versity, Burnaby, BC (1992).

[25] D.A. KENDRICK, Parallel Model Representations. Expert Systems With Applications
1 (1990) 383-389.

[26] D.A. KENDRICK, A Graphical Interface for Production and Transportation System
Modeling: PTS. Computer Science in Economics and Management 4 (1991) 229-236.

[27] J.-L. LAURIERE, A Language and a Program for Stating and Solving Combinatorial
Problems. Artificial Intelligence 10 (1978) 29-127.

[28] G.E. LIEPINS and M.R. HILLIARD, Genetic Algorithms: Foundations and Applica-
tions. Annals of Operations Research 21 (1989) 31-57.

[29] K. MCALOON and C. TRETKOFF, 2LP: Linear Programming and Logic Programming.
In V. Saraswat and P. Van Hentenryck, eds., Principles and Practice of Constraint
Programming, The MIT Press, Cambridge, MA (1995) 99-114.

[30] R:D. MCBRIDE, NETSYS — A Generalized Network Modeling System. Technical
Report, University of Southern California, Los Angeles, CA (1988).

[31] W. OGRYCZAK, K. STUDZINSKI and K. ZORYCHTA, DINAS: A Computer-Assisted
Analysis System for Multiobjective Transshipment Problems with Facility Location.
Computers and Operations Research 19 (1992) 637-647.

[32] W. OGRYCZAK, K. STUDZINSKI and K. ZORYCHTA, EDINET — A Network Editor
for Transshipment Problems with Facility Location. In O. Balci, R. Sharda and S.A.
Zenios, eds., Computer Science and Operations Research: New Developments in their
Interfaces, Pergamon Press, New York (1992) 197-212.

[33] D. STEIGER, R. SHARDA and B. LECLAIRE, Functional Description of a Graph-Based
Interface for Network Modeling (GIN). In O. Balci, R. Sharda and S.A. Zenios, eds.,
Computer Science and Operations Research: New Developments in their Interfaces,
Pergamon Press, New York (1992) 213-229.

[34] D. STEIGER, R. SHARDA and B. LECLAIRE, Graphical Interfaces for Network Model-
ing: A Model Management System Perspective. ORSA Journal on Computing 5 (1993)
275-291.

[35] L. STERLING and E. SHAPIRO, The Art of Prolog: Advanced Programming Tech-
niques, 2nd ed. MIT Press, Cambridge, MA (1994).

[36] P. VAN HENTENRYCK, Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, MA (1989).

[37] P. VAN HENTENRYCK, A Logic Language for Combinatorial Optimization. Annals of
Operations Research 21 (1989) 247-273.

[38] P.J.M. VAN LAARHOVEN and E.H.L. AARTS, Simulated Annealing: Theory and Ap-
plications. D. Reidel, Norwell, MA (1987).

